Browse > Article
http://dx.doi.org/10.5389/KSAE.2017.59.5.017

Torrefaction Properties of Unused Agricultural Residues As Biomass Fuel  

Yoon, Yeo Seong (Department of Bioresource and Rural Systems Engineering, Hankyong National University)
Kang, ku (Research Institute of Agricultural and Environmental Science, Hankyong National University)
Park, Seong Jik (Department of Bioresource and Rural Systems Engineering, Hankyong National University)
Hong, Seong Gu (Department of Bioresource and Rural Systems Engineering, Hankyong National University)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.59, no.5, 2017 , pp. 17-23 More about this Journal
Abstract
In South Korea, 25 % of annual agricultural residues (11.64 million tons) are unused. The hydrophilicity, low lower heating value (LHV), and low energy density of agricultural residues can be obstacles for efficient usage. Torrefaction, a low temperature pyrolysis process, can be a solution to overcome these disadvantage of agricultural residues. In this study, agricultural residues such as bean stem, pepper stem, perilla stem, sorghum stem, acorn shell, and ginkgo shell are torrefied at 200, 230, and $250^{\circ}C$ and evaluated energy properties, respectively. The torrefaction can increase the LHV and energy density rate of agricultural residues from 3,331~4,444 kcal/kg to 4,166~5,830 kcal/kg and 20~30 %, respectively.
Keywords
Biomass; Agricultural residue; Torrefaction; Renewable energy; Fuel;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Cho, H. S., Y. J. Sung, C. H. Kim, G. S. Lee, S. J. Yim, H. G. Nam, J. Y. Lee, and S. B. Kim, 2014. Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass -. Journal of Korea Technical Association of The Pulp and Paper Industry 46(1): 18-28 (in Korean).   DOI
2 Correia, R., M. Goncalves, C. Norbe, and B. Mendes, 2017. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresource Technology 223: 210-218.   DOI
3 Deng, J., G. J. Wang, J. H. Kuang, Y. L. Zhang, and Y. H. Luo, 2009. Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Aplied Pyrolysis 86:331-337.   DOI
4 Gong, S. H., B. J. Ahn, S. M. Lee, J. J. Lee, Y. K. Lee, and J. W. Lee, 2016. Thermal Degradation Behavior of Biomass Depending on Torrefaction Temperatures and Heating Rates. Journal of the Korean Wood Science and Technology 44(5): 685-694 (in Korean).   DOI
5 Hong, S. G., 2004. Evaluation of Agricultural Biomass Resources for Renewable Energy - Biomass from Orchards and Non-paddy Fields -. Jouranl of the Korean Society of Agricultural Engineers 46(3): 85-92 (in Korean).   DOI
6 Hong, S. G., 2008. Future Agriculture Considering Combined Use of Biomass Resources. Magazine of the Korean Society of Agriculutral Engineers 50(2): 42-51 (in Korean).
7 Hong, S. G., 2015. Strategies for Increasing Biomass Energy Utilization in Rural Areas - Focusing on heating for greenhouse cultivation -. Journal of the Korean Society of Agricultural Engineers 57(6): 9-20 (in Korean).   DOI
8 Jeeban, P., W. T. Kim, T. I. Ohm, and S. C. Oh, 2014. A Study on Torrefaction Characteristics of Baggase. Korean Chemical Engineering Research 52(5): 672-677 (in Korean).   DOI
9 Jeong, N. Y. and L. H. Kim, 2010. The Study of Economic Feasibility of Wood Pellet in Domestic Power Plants Sector. Journal of Energy Engineering 19(4): 251-257 (in Korean).
10 Kang, B., Y. W. Lee, C. K. Ryu, and W. Y., 2017. Application of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability. Clean Technology 23(1): 73-79 (in Korean).   DOI
11 Kang, K., L. Wang, and S. G. Hong, 2014. The Characterization of Woodchip Torrefaction and Byproduct Gas. Journal of the Korean Society of Agricutural Engineers 56(6): 55-62 (in Korean).
12 Kim, Y. H., B. I. Na, S. M. Lee, H. W. Lee, and J. W. Lee, 2013. Optimal Condition for Torrefaction of Eucalyptus by Response Surface Methodology. Journal of the Korean Wood Science and Technology 41(6): 497-506 (in Korean).   DOI
13 Lee, M. S., G. S. Jeong, S. J. Jung, and K. Y. Lee, 2013. The Fuelization Study on the Oil Palm Frond Through Torrefaction. Korean Chemical Engineering Research 51(4): 465-469 (in Korean).   DOI
14 Lee, W. J., 2015. Study on Torrefaction Characteristics of Solid Biomass Fuel and Its Combustion Behavior. Journal of the Korea Organic Resource Recycling Association 23(4):86-94 (in Korean).   DOI
15 Li, M. F., L. X. Chen, X. Li, C. Z. Chen, Y. C. Lai, X. Xiao, and Y. Y. Wu, 2016. Evaluation of the structure and fuel properties of lignocelluloses through carbon cioxide torrefaction. Energy Conversion and Management 119: 463-472.   DOI
16 Matali, S., N. A. Rahman, S. S. Idris, N. Yaacob, and A. B. Alias, 2016. Lignocellulosic, Biomass solid Fuel Properties Enhancement via Torrefaction. Procedia Engineering 148:671-678.   DOI
17 Mun, T. Y., Z. T. Tefera, U. D. Lee, J. W. Lee, and W. Yang, 2014. Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant. Journal of the Korean Society of Combustion 19(3): 8-17 (in Korean).   DOI
18 Nam, H. S. and S. Capareda, 2015. Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology). Energy 91: 507-516.   DOI
19 Park, D. H., B. J. Ahn, S. T. Kim, J. W. Lee, G. S. Han, and I. Yang, 2015. Microscopic Observation of Pellets Fabricated with Torrefied Larch and Tulip Tree Chips and Effect of Binders on the Durability of the Pellets. Korean Chemical Engineering Research 53(2): 224-230 (in Korean).   DOI
20 Oh, D. G., Y. H. Kim, and H. S. Son, 2013. Fuel Properties of Spent Coffee Bean by Torrefacation. Journal of the Korean society for New and Renewable Energy 9(3): 29-35 (in Korean).   DOI
21 Park, W. K., N. B. Park, J. D. Shin, S. G. Hong, and S. I. Kwon, 2011. Estimation of Biomass Resource Conversion Factor and Potential Production in Agricultural Sector. Korean Journal of Environmental Agriculture 30(3): 252-262 (in Korean).   DOI
22 Prins, M. J., K. J. Ptasinski, and F. J. J. G. Janssen, 2006. Torrefaction of wood Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis 77(2006): 28-34.   DOI
23 Ren, X., R. Sun, X. Meng, N. Vorobiev, M. Schiemann, and Y. A. Levendis, 2017. Carbon, sulfur and nitrogen oxide emissions froom combustion of pulverized raw and torrefied biomass. Fuel 188: 310-323.   DOI
24 Sh, L., S. I. Kim, H. Lim, B. H. Lee, S. M. Kim, and C. H. Jeon, Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio. Transactions of the Korean Society of Mechanical Engineeers B 40(1): 31-37 (in Korean).   DOI
25 Van K. D. W., 1950. Graphical-statistical method for th study of structure and reaction processes of coal. Fuel. 29: 269-284.
26 Xue, Gang, M. Kwapinska, W. Kwapinska, K. M. Czajka, J. Kennedy, and J. J. Leahy, 2014. Impact of torrefaction on properties of Miscanthus x giganteus relevant to gasification. Fuel 121: 189-197.   DOI
27 Zhang, Z., G. Zhang, W. Li, C. Li, and G. Xu, 2016. Enhanced biogas production from sorghum stem by co-digestion with cow manure. International Journal of Hydrogen 41: 9153-9158.   DOI
28 Yu, G. D., H. B. Na, G. H. An, B. C. Koo, J. W. Ahn, Y. H. Moon, Y. L. Cha, Y. M. Yoon, J. W. Yang, and I. H. Choi, 2013. Physiochemical Characteristics for Bale Types and Storage Periods of Agricultural By-products as a Lignocellulosic Biomass. Korean Journal of Crop Science 58(3): 324-330 (in Korean).   DOI