• Title/Summary/Keyword: 바이오연료

Search Result 682, Processing Time 0.027 seconds

Effect of Biomass Co-firing Ratio on Operating Factors of Pulverizer in 500 MW Coal-fired Power Plant (500 MW 석탄화력 발전소에서 바이오매스 혼소율이 미분기 운전인자에 미치는 영향)

  • Geum, Jun Ho;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.28-40
    • /
    • 2022
  • As the proportion of renewable energy generation is expected to increase, public power generation businesses need to actively consider implementing the expansion of biomass mixing, In this study, the biomass co-firing rate is being changed from 0wt.% to 5.0wt.% at 500MW coal-fired power plant, measuring the major operation characteristics of the pulverizer. First, the composition analysis and grinding characteristics of lignocelluosic biomass were examined, and the effect of volume increase on dirrerential bowl pressure difference, motor current, coal spillage, outlet temperature, and internal fire count was analyzed. As the co-firing rate increased, it was confirmed that the difference in the differential bowl pressure, motor current, and coal spillage treated increased, and the outlet temperature was minimal. The number of internal fires is difficult to find a clear correlation, but it has been confirmed that it is highly likely to occur in combination with other driving factors.

  • PDF

Ignition Characteristics of Petroleum-based and Bio Aviation Fuel According to the Change of Temperature and Pressure (온도와 압력의 변화에 따른 석유계 및 바이오항공유의 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.238-244
    • /
    • 2019
  • In this study, the ignition characteristics of petroleum-based aviation fuel (Jet A-1), bio aviation fuel (Bio-6308), and blended aviation fuel (50:50, v:v) were analyzed in accordance with change of temperature and pressure. The ignition delay time of each aviation fuel was measured by combustion research unit (CRU) and the compositions of the fuels were analyzed by GC/MS and GC/FID for qualitative and quantitative results. From the results, it was confirmed that the ignition delay times of all aviation fuels were shortened with increasing temperature and pressure. In particular, the effect of temperature was larger than the effect of pressure. Also, the ignition delay time of Jet A-1 was the longest at all measurement conditions, and it was judged that this result is because of the structurally stable characteristics of the benzyl radical generated during the oxidation reaction of the aromatic compound (about 22.48%) in Jet A-1. Also, it was confirmed that Jet A-1 had no section where the degree of shortening of ignition delay time was decreased by increasing temperature, which was because the benzyl radical inhibits the response that can affect the negative temperature coefficient (NTC). The ignition characteristics of blended aviation fuel (50:50, v:v) showed a similar tendency to those of Jet A-1, rather than to those of Bio-6308, so that the blended aviation fuel (50:50, v:v) can be applied to the existing system without any change.

Investigative Analysis of By-products from Lignocellulosic Biomass Combustion and Their Impact on Mortar Properties (목질계 바이오매스 연소부산물 분석과 모르타르 혼입 평가)

  • Jung, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.663-671
    • /
    • 2023
  • This research experimentally evaluated the recyclability of four varieties of lignocellulosic fly ash(FA), a by-product from three power plants employing lignocellulosic biomass(Bio-SRF, wood pellets) as a fuel source. Comprehensive analyses were conducted on FA, encompassing both physical parameters (particle shape, size distribution, fineness, and density) and chemical properties(chemical composition and heavy metal content). Mortar test specimens, with FA mixing ratios ranging from 5 to 20%, were produced in compliance with KS L 5405 standards, and their flow and compressive strength were subsequently measured. The test results indicated that the four types of FA exhibited particle sizes approximately between 20~30㎛, densities around 2.3~2.5g/cm3, and a fineness range of 2,600~4,900cm2/g. The FA comprised approximately 50~90% of components such as SiO2, Al2O3, Fe2O3, and CaO, displaying characteristics akin to type-II and type-III FA of KS L 5405 standards, albeit with differences in chlorine and SiO2 content. From the mortar tests, it was observed that the compressive strength of the mortar ranged between 34~47MPa when the pellet combustion FA was mixed in proportions of 5~20%. FA, produced exclusively from the combustion of 100% lignocellulosic fuel, is assessed to possess high recyclability potential as a substitute for conventional admixtures.

Evaluating the Properties and Commercializing Potential Of Rape Stalk-based Pellets Produced with a Pilot-scaled Flat-die Pellet Mill (파일럿 규모의 평다이 성형기로 제조한 유채대 펠릿의 연료적 특성 및 상용화 가능성 평가)

  • Sei Chang Oh;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • This study was conducted to evaluate the potential of rape stalk (RAS) as a raw material for the production of solid bio-fuels. RAS was immersed in an aqueous solution with acetic acid concentration of 1 percent, The content of reducing sugars separated from the RAS was analyzed. Glucose showed the highest content followed by xylose, galactose, arabinose and mannose. The immersed and non-immersed RAS were used for producing pellets with a pilot-scaled flat-die pellet mill. Bulk density and calorific values of the pellets improved with the use of the immersed RAS and the addition of wood particles. The values exceeded the minimum requirements for the A-grade of non-woody pellets (≧600 kg/m3 & ≧ 14.5 MJ/kg) designated by the ISO. Ash content of the pellets reduced with the immersion of RAS and the value satisfied the A-grade level (≦6.0%) of the ISO standard. The durability of the immersed RAS-based pellets was much higher than that of non-immersed IRS-based pellets, and the values were increased with the addition of wood particles. However, the durability did not meet the acceptance level for the B-grade of non-woody pellets (≧96.0%) designated by the ISO. These results suggested that the addition of binders in the production of non-woody pellets using an RAS immersed in acetic acid-based aqueous solution is required for the commercialization of the pellets.

Evaluation of Solidified Fuel Value of Dairy Cattle Manure Digested by Semi-Dry Anaerobic Digestion Method (젖소분뇨 반 건식 혐기소화 잔재물의 고체연료화 가능성 평가)

  • Jeong, Kwang-Hwa;Kim, Jung Kon;Lee, Dong-jun;Cho, Won-Mo;Ravindran, B.;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.95-103
    • /
    • 2016
  • The objective of this study was to investigate feasibility of semi-dry anaerobic digestion using dairy cattle manure and to evaluate solidified fuel value of semi-dry anaerobic digestate. To evaluate semi-dry anaerobic digestion using dairy cattle manure, 950 mL bottle type anaerobic reactor was set in the constant temperature room maintained at $35^{\circ}C$. To produce anaerobic digestate for making solidified fuel, acrylic cylindrical anaerobic digester(1,000 mm width ${\times}$ 450 mm height) was set in the constant room temperature to carry out batch test of semi-dry anaerobic digestion using same dairy cattle manure. Moisture content of dairy cattle manure and inoculum solution for anaerobic digestion were 80.64% and 96.83%, respectively. The dairy cattle manure and the inoculum solution was mixed by 1:1 ratio(v/v) for anaerobic digestion. Water content and VS/TS(Volatile Solids/Total Solids) of mixture of substrate and inoculum were 89.74% and 83.35%, respectively. In case of non-inoculated anaerobic digester, the biogas was not produced. By the semi-dry anaerobic digestion, the calorific value of the digestate was reduced by 20% compare to fresh dairy cattle manure. In other hand, ash content increased from 15% to 18.4%. The contents of Cr, Pb, Cd and S of pellet produced from anaerobically digested dairy cattle manure were not against the standard regulation for livestock manure solidified fuel. Therefore, it can be used as fuel that anaerobic digestate produced after semi-dry anaerobic digestion using dairy cattle manure.

그린카 구조 및 연구동향

  • Han, Gyeong-Sik
    • KIPE Magazine
    • /
    • v.14 no.4
    • /
    • pp.23-27
    • /
    • 2009
  • 자동차 산업의 공통된 최대 이슈는 환경, 안전, 에너지, 편의이다. 이러한 시대적 요구에 따라 자동차 메이커들은 대응 방안 마련은 물론 시장 주도를 위한 기술개발 등 다양한 노력을 하고 있으며, 전장부품과 센서 등 최첨단 하이테크 기술과 플라스틱 , 나노, 하이브리드 소재 등이 적용된 다양한 부품들을 자동차에 적용시키고 있다. 또한수소연료전지, 바이오디젤, 태양광, 전기 등 석유 대체 에너지를 적용한 차세대 연료 자동차들이 전세계 모터쇼 등 전시회에 출품되어 세계의 이 목을 집중시키고 있으며 , 이미 일본과 미국시장을 중심으로 하이브리드 전기 자동차(HEV) 및 수소연료전지 자동차 (FCEV) 시장이 확대대고 있는 실증이다 따라서 국내에서도 그런카에 대한 관심도가 증가하고 있고 일부에서는 개발에 박차를 가하고 있다. 이에 그린카에 대한 간단한 구조와 최근 연구동향에 대해서 기술하고자 한다.

아세톤을 용매로 한 폐신문지의 용매상 열분해 반응에 관한 연구

  • On, Gwang-Cheol;Yun, Seong-Uk;Lee, Byeong-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.761-762
    • /
    • 2000
  • Waste newspaper is many part of Municipal Solid Waste(MSW). Newspaper consist of cellulose, hemicellulose and lignin which biomass components. We could get various compound usable as fuel when pyrolysis of lignin. Therefore, we should get similar phenomena with pyrolysis of newspaper. Highest conversion rate when acetone was used as pyrolysis solvent was $350 {\sim}400^{\circ}C$, $40{\sim}50$minutes.

  • PDF

The Spray and Combustion Characteristics by the Ratio of Cetane Number Enhancing Additives in Diesel (세탄가 향상 혼합 연료에 따른 디젤 연료의 분무 및 연소특성에 관한 연구)

  • Kim, J.H.;Lee, S.W.;Lee, H.S.;Choi, J.H.;Lee, Y.C.;Cho, Y.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying different composition rates of octane number in diesel fuel to a common-rail system. For the visualization, the experiment was carried out under different injection pressures and different cetane number. The test was done by three different types of diesel fuels, the different composition rates of cetane number in diesel fuel and HBD. In summary, this research aims to investigate the combustion characteristics in the application of fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide with fundamentals of the development of diesel engines in future.

  • PDF

Hydrogen Storage Using Nano-Materials (나노 물질을 이용한 수소 저장)

  • Yu, H.Y.;Kim, B.H.;Oh, S.Y.;Yun, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.23 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • 지구상에 존재하는 화석연료는 산업혁명 이후 그 사용에 있어서 지속적인 증가 추세를 유지하여 왔고, 급기야는 그 잔존량의 고갈 및 이들 연료의 사용으로 인한 지구의 대기오염 등을 유발하고 있다. 이에 따라 새로운 에너지원, 즉 태양 에너지, 수소 에너지, 바이오 에너지 등에 그 활용 시각이 돌려지게 되었으며 이들은 다음 세대의 전인류적 에너지원으로 활용될 가능성이 원유 가격의 상승에 따라 점점 높아지고 있다. 이들 대체 에너지 중에서 수소 에너지는 지구뿐만 아니라 우주적으로 현존량이 가장 많은 에너지로 알려져 왔으며 이러한 수소 에너지 활성화를 위하여 무엇보다도 중요한 것이 수소 저장 능력에 관한 것이다. 본 분석에서는 이러한 수소 에너지를 비롯한 수소 저장에 대한 내용을 다루고 있으며 앞으로의 수소 저장 방향에 대해서 또한 언급한다.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.