• Title/Summary/Keyword: 바이오산업

Search Result 992, Processing Time 0.031 seconds

Status and Improvement of Metropolitan Government Urban Agriculture Ordinances for the Enhancement of Multifunctionality in Urban Agriculture (도시농업의 다원적 기능 활성화를 위한 광역지방자치단체 도시농업 조례 현황 및 개선 방향)

  • Ji-Won Choe;Choong-Hyeon Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.1
    • /
    • pp.90-107
    • /
    • 2024
  • This study analyzed the status of urban agricultural regulation of metropolitan governments on supporting multi-dimensional values to suggest a direction for improving urban agriculture regulations. Moreover, a Delphi survey was conducted to derive ways to identify improvement opportunities for functions that showed relatively insufficient support for urban agricultural regulations. As a result of the study, 12 out of 17 metropolitan governments and 116 of 226 municipalities have enacted urban agricultural regulations. However, the enactment of urban agricultural regulations has generally declined since 2011. Analysis of the contents of the urban agricultural regulations showed that they focused on matters relating to the creation and expansion of the foundation of urban agriculture. Among the multi-dimensional values of urban agricultural regulations, the foundation for supporting the securing of green spaces and utilizing food production functions was most widely available. On the other hand, the foundation for support of resource recycling, healing and health, social welfare, economic imbalance mitigation, and job creation functions has been shown to be relatively insufficient. A Delphi survey conducted to determine potential measures to improve urban agricultural regulations to support these functions found that 17 of the 18 ordinance improvement measures were valid. Therefore, to revitalize the multi-dimensional values of urban agriculture, it is first necessary to enact new ordinances. Also, to revitalize the multi-dimensional values of urban agriculture evenly, it is necessary to revise the ordinances to include resource recycling, healing and health, social welfare, mitigation of economic imbalances, and job creation functions. In this process, the development of urban agriculture technology, legal review of various urban farming spaces, and fostering of industries related to urban agriculture are necessary. Above all, steady interest in the multi-dimensional values of urban agriculture and the efforts of local governments to foster urban agriculture must be supported.

Potential production strategy for distilled soju by fermenting nonsteamed rice using commercial enzyme products (상업용 효소제를 이용한 무증자 쌀 발효 증류식 소주의 제조 가능성)

  • Ye Seul Kwon;Jisu Lee;Mi Seong Kim;Sochon Han;Han-Seok Choi
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.669-682
    • /
    • 2023
  • The production of distilled soju by fermenting nonsteamed rice was evaluated using commercial enzyme products. White koji and modified nuruk had alpha-amylase activities of 31.90 U/g and 3,532.71 U/g, respectively, and gluco-amylase activities of 698.32 U/g and 4,899.58 U/g, respectively. The enzyme products had activities of 5,604.15-225,182.00 U/g and 13,517.41-120,822.41 U/g, respectively. At enzyme concentrations of >800 mg/L, the Chung-moo-purified enzyme had an alcohol productivity of ≥19%. Nurukzyme R400, Sanferm Yied, and Diazyme X4 exhibited alcohol productivities of >19% at concentrations of >600 mg/L. The alcohol content of the vacuum distillates was 41.31%-44.86%. The volatile component with the alcohol content adjusted to 25% was analyzed and principal component analysis was performed. The volatile components in white koji, Diazyme X4, and Sanferm Yield were similar. The modified nuruk treatment group had a relatively high ethyl lactate content compared to the white koji treatment group. The Nurukzyme R400 treatment group had high contents of butyric acid and ethyl butyrate. The Chung-moo-purified enzyme was characterized by a low component content. Thus, when enzyme products were used in nonsteamed rice fermentation, no effect on the alcohol productivity and quality of vacuum distilled soju was observed, suggesting that it can replace white koji and modified nuruk.

The Economic Effects of the New and Renewable Energies Sector (신재생에너지 부문의 경제적 파급효과 분석)

  • Lim, Seul-Ye;Park, So-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2014
  • The Korean government made the 2nd Energy Basic Plan to achieve 11% of new and renewable energies distribution rate until 2035 as a response to cope with international discussion about greenhouse gas emission reduction. Renewable energies include solar thermal, photovoltaic, bioenergy, wind power, small hydropower, geothermal energy, ocean energy, and waste energy. New energies contain fuel cells, coal gasification and liquefaction, and hydrogen. As public and private investment to enhance the distribution of new and renewable energies, it is necessary to clarify the economic effects of the new and renewable energies sector. To the end, this study attempts to apply an input-output analysis and analyze the economic effects of new and renewable energies sector using 2012 input-output table. Three topics are dealt with. First, production-inducing effect, value-added creation effect, and employment-inducing effect are quantified based on demand-driven model. Second, supply shortage effects are analyzed employing supply-driven model. Lastly, price pervasive effects are investigated applying Leontief price model. The results of this analysis are as follows. First, one won of production or investment in new and renewable energies sector induces 2.1776 won of production and 0.7080 won of value-added. Moreover, the employment-inducing effect of one billion won of production or investment in new and renewable energies sector is estimated to be 9.0337 persons. Second, production shortage cost from one won of supply failure in new and renewable energies sector is calculated to be 1.6314 won, which is not small. Third, the impact of the 10% increase in new and renewable energies rate on the general price level is computed to be 0.0123%, which is small. This information can be utilized in forecasting the economic effects of new and renewable energies sector.

Comparison on the Extraction Efficiency and Antioxidant Activity of Flavonoid from Citrus Peel by Different Extraction Methods (추출방법에 따른 감귤 과피 유래 Flavonoid의 추출효율 및 항산화 효과에 대한 비교)

  • Cheigh, Chan-Ick;Jung, Won-Guen;Chung, Eun-Young;Ko, Min-Jung;Cho, Sang-Woo;Lee, Jae-Hwan;Chang, Pahn-Shick;Park, Young-Seo;Paik, Hyun-Dong;Kim, Kee-Tae;Chung, Myong-Soo
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.166-172
    • /
    • 2010
  • The extraction of polyphenol and flavonoid from citrus peel was performed by the ethanol, sugar, hot water (80$^{\circ}C$), and subcritical water extraction methods. The maximum yields of total polyphenolic compounds (27.25${\pm}$1.33 mg QE/g DCP, QE and DCP indicate quercetin equivalent and dried citrus peel, respectively) and flavonoids (7.31${\pm}$0.41 mg QE/g DCP) were obtained by subcritical water extraction (SWE) with operating conditions of 190$^{\circ}C$, 1300 psi, and 10 min. The yields by SWE were over 7.2-, and 8.5-fold higher than those of total polyphenols (3.79${\pm}$0.73 mg QE/g DCP) and flavonoids (0.86${\pm}$0.27 mg QE/g DCP) obtained using the ethanol extraction, which showed the highest extraction efficiency among tested conventional methods, respectively. Antioxidant activities of extracts obtained by different methods showed no significant differences. However, the relative antioxidant yield per 1 g dried citrus peel by SWE (190$^{\circ}C$, 10 min) was over 9.5-fold higher than that by the ethanol extraction.

A Study on the New Development for Determination of Dead Time in GC-OTC/FID (GC-OTC/FID에서 Dead Time 결정을 위한 새로운 방법 개발에 대한 연구)

  • Oh, Doe Seok;Kim, Sung Wha;Ko, Eun Ah;Jeon, Hyung Woo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.246-252
    • /
    • 2019
  • In the system of GC-OTC/FID (Gas chromatography-Open Tubular Column/Flame Ionization Detector), DMSO (Dimethyl sulfide) solvent was used to separate the polar solvents (Alcohols). In this system DMSO was eluted later than the separated polar solvents. At this system to calculate chromatographic factors [adjusted retention time ($t_R^{\prime}=t_R-t_O$), capacity factor{$k^{\prime}=(t_R-t_O)/t_O$} and separation factor {${\alpha}=(t_{R2}-t_O)/(t_{R1}-t_O)$}], dead time($t_O$) is necessary, but the method to calculate it has not been reported yet. Therefore, we have tried to develop $t_O$. To calculate $t_O$, we conversed DMSO retention time (DMSO $t_R$) to logarithm ($f(x)={\log}\;t_{R(DMSO)}{\rightarrow}t_O$, $t_O={\log}$ 9.551=0.980). To confirm the optimization of the developed method, we compared with $CH_4\;t_R$ and ${\ln}\;t_{R(DMSO)}$. Both of the values calculated by $CH_4\;t_R$ and ${\ln}\;t_{R(DMSO)}$ were not suitable in the calculation k' and ${\alpha}$. The developed method in this study{${\log}\;t_{R(DMSO)}$} has satisfied both of the values k' criteria (1${\alpha}(1<{\alpha}<2)$. The developed calculation method in this study was easy and convenient, therefore it can be expected to be applied to these similar systems.

Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS) (표고버섯 수확 후 배지의 이화학적, 영양적, 효소적 특성)

  • Sung, Hwa-Jung;Pyo, Su-Jin;Kim, Jong-Sik;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1339-1346
    • /
    • 2018
  • In Korea, edible mushrooms are produced largely on commercial artificial media, so the annual production of spent mushroom substrate (SMS), as a by-product of the mushroom industry, is estimated at over 200 million tons. This SMS is assumed to contain abundant fungal mycelia and pre-fruiting bodies, as well as various nutritive and bioactive compounds that are presently discarded. This study examined the physico-chemical, nutritional, and enzymatic characteristics of uninoculated sterilized medium (USM) and SMS of shiitake mushrooms with the aim of developing a high-value added product from SMS. The contents of crude protein, crude lipid, and ash were higher after the third SMS harvest ($SMS-A-3^{rd}$) than in USM or $SMS-A-1^{st}$. The contents of Ca, Mg, and P in $SMS-A-3^{rd}$ were 2.95, 2.35, and 2.1-fold higher compared than in USM. No As or Cd was detected in USM or SMS. The pH, Brix, and acidity were 4.6, 20.0, and 1.4, respectively in $SMS-A-3^{rd}$, but 5.6, 6.0, and 0.0, respectively, in USM. These results suggest a highly active production of soluble components and organic acids in $SMS-A-3^{rd}$. The distinct color differences noted for USM, $SMS-A-1^{st}$, and $SMS-A-3^{rd}$ could be used as a mycelial growth indicator. Enzyme activity assays using the APIZYM system showed that SMS is a potent source of hydrolysis-related enzymes, especially esterase (C4) and ${\beta}$-glucuronidase. Our results suggested that the SMS of shiitake has a high potential for use in environmental, agricultural, and stock-breeding industries, for example, as active ingredients for sewage treatment, waste-polymer degradation, and feed additives.

Utilization of the National-Level Resource Productivity Indicators Considering the Economic Value of Metal Resources (금속 자원의 경제적 가치를 고려한 국가 단위 자원생산성 지표 활용 방안)

  • Jong-Hyo Lee;Hong-Yoon Kang;Yong Woo Hwang;Sang-Hyun Oh
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.276-286
    • /
    • 2024
  • Since the Paris Agreement and the surge in global interest in climate change, the importance of measuring and managing national-level resource productivity has steadily grown. However, concerns about the reliability of productivity indicators persist due to inherent uncertainties. This study estimated the metal and non-metal resource productivities of 38 OECD countries through multiple regression analysis and conducted a comparative analysis of their ranking changes according to their current resource productivities. The study results revealed that the 38 OECD countries could be classified into four categories. First, countries with low overall resource productivities due to a high economic dependence on low-value metal resources by weight exhibited a substantial rise in their non-metal resource productivity rankings. Second, countries that have minimal metal industries in their national economies but generate high value-added from these sectors showed a notable increase in their metal resource productivity rankings. Third, countries with a low proportion of metal industry in their economies and low metal resource productivities experienced significant declines in their metal resource productivity rankings. Fourth, countries with a small disparity between their metal and non-metal resource productivities showed minimal changes in their rankings for both categories. These results highlight that changes in metal resource productivity rankings were more pronounced than those for non-metal resources, which implies that the influence of non-metal resources (biomass, fossil fuels, non-metallic minerals) dominates national-level resource productivity because their economic value is higher than metal resources. These findings suggest that it is necessary to manage the economic value of each resource type as distinct statistical data to provide a more nuanced understanding of national resource productivity.

Characterization of Quorum-Quenching Bacteria Isolated from Biofouled Membrane Used in Reverse Osmosis Process (Biofouling이 일어난 역삼투막에서 분리한 쿼럼 저해 세균의 특성)

  • Moon, Sooyoung;Huang, Xinxin;Choi, Sung-Chan;Oh, Young-Sook
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • Acyl homoserine lactone (AHL) lactonase has been proved to be the AHL-degrading enzyme with the highest substrate specificity for AHL molecules and has shown a considerable potential as low-cost and efficient quorum quenching (QQ) technique. However, few studies focused on its inhibitory effect on biofilm formation which is also a quorum sensing (QS)-regulated phenomenon. In this study, QQ activity of six isolates from biofouled reverse osmosis membranes was studied using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4 as biosensors under various conditions. All of the isolates belonged to the genus Bacillus and showed QQ activity regardless of the acyl chain length or substitution of AHL molecule. The isolates were capable of significantly inhibiting biofilm formation (46.7-58.3%) by Pseudomonas aeruginosa PAO1 and produced heat-sensitive extracellular QQ substances. The LC-MS analysis of the QQ activity of a selected isolate, RO1S-5, revealed the degradation of N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 AHL) and the production of corresponding acyl homoserine (3-oxo-C12-HS), which indicated the activity of AHL lactonase. The broad AHL substrate range and high substrate specificity suggested that the isolate would be useful for the control of biofilm-related pathogenesis and biofouling in industrial processes.

생물공정의 측정 및 새로운 공정변수의 개발

  • Heo, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.51-52
    • /
    • 2000
  • 생물공정의 운전에 있어서 적절한 공정변수가 부족한 경우가 많다. 이것은 멸균과정을 견딜 수 있는 신뢰성 높은 센서가 부족하기 때문이다[1]. 생물공정에 주로 사용되는 센서로서는 온도, pH, D.O., rpm, viscosoty 등이 있으나 이 센서들은 배양액의 물리적 혹은 화학적 상태를 측정할 수 있는 경우가 대부분이다[2]. 미생물의 대사활동과 관련이 있는 공정 변수로는 배출가스의 성분을 측정하여 얻을 수 있는 Oxygen uptake rate, Carbon dioxide evolution rate 및 Respiratory quotient가 있으며 현재 생물공정의 운전에 사용되고 있다[3]. 그러나 반복적인 센서의 보정과 연결관의 잦은 청소 및 보수를 필요로 하여 제한적으로 사용되고있는 실정이다. 자동화된 습식분석장치, Gas chromatograph, High Performace Liquid Chromatograph 혹은 Mass spectrophtometry 등을 온라인 샘플 처리장치와 연결하여 발효조의 배양액의 성분을 온라인으로 분석하고 공정의 운전에 응용하는 사례가 많이 발표되었다[4-6]. 고가의 장비 및 운전의 번거러움이나 추가적인 인력이 필요하므로 역시 특별한 경우에만 사용되고 있다. 이외에도 여러 종류의 온라인 센서 및 바이오 센서등이 개발되어 사용되고 있으나 역시 그 사용범위는 특수한 영역에 한정되어있다. 이와 같이 새로운 센서를 개발하여 공정변수를 측정하려는 시도중의 하나가 소프트웨어 센서의 개발이다. 이 것은 공정상에서 발생하는 1차 공정변수를 이용하여 배양액의 상태 혹은 2차적인 공정 변수를 추측해내는 것이다. 대부분의 경우 기존의 공정 변수를 사용하므로 추가적인 비용이 들지 않고 소프트웨어의 형태로 구현되므로 센서의 보정과 설치 및 유지관리의 노력이 매우 적은 장점이 있다. 본 연구에서는 생물공정에서 자동제어 과정에서 발생하는 여러 가지 공정상의 제어 신호로부터 새로운 공정 변수를 얻어내고자 시도하였다. 대부분의 생물공정에서는 pH의 자동제어가 필수적인데 자동제어 과정에서 발생하는 pH 제어 신호 및 pH의 변화 응답신호를 이용하여 배지의 완충용량의 변화와 알칼리의 소비속도를 온라인으로 측정할 수 있었다. 여기에 인공지능망을 설계하여 균체의 량을 온라인으로 추정하는 방법을 개발하였다 [7].산업용 발효조의 운전 온도는 주로 냉각수의 단속적인 공급에 의하여 항상 일정하게 조절된다. 따라서 냉각수의 냉각량을 측정하면 미생물의 배양시 발생하는 대사열량을 측정할 수 있게 된다. 본 연구에서는 실험실의 발효조를 냉각수의 단속적인 공급에 의하여 자동온도 조절이 되도록 개조하고 여기에 냉각수의 유출입 지점에 온도센서를 부착하여 냉각수의 온도를 측정하고 냉각수의 공급량과 대기의 온도 등을 측정하여 대사열의 발생을 추정할 수 있었다. 동시에 이를 이용하여 유가배양시 기질을 공급하는 공정변수로 사용하였다 [8]. 생물학적인 폐수처리장치인 활성 슬러지법에서 미생물의 활성을 측정하는 방법은 아직 그다지 개발되어있지 않다. 본 연구에서는 슬러지의 주 구성원이 미생물인 점에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.

  • PDF

Nondestructive Advanced Indentation Technique: The Application Study Industrial Structure to Nanomaterial (비파괴적 연속압입시험: 대형구조물로부터 nano소재까지의 응용연구)

  • Jeon, Eun-Chae;Kwon, Dong-Il;Choi, Yeol;Jang, Jae-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.333-346
    • /
    • 2002
  • The continuous indentation techniques are one of the most effective methods to nondestructively estimate mechanical properties. There are many applications in various dimensions of materials from macro-scale, through micro-scale, even to nano-scale range. The macro-range technology of kgf-load level is now focused on the evaluation of tensile properties and residual stress of bulk materials, for example, used in conventional load-bearing structures and in-use pipelines. The technology and the apparatus were successfully developed by a domestic research group. The micro-range technology of gf-load level can be applied to investigate some property-gradient materials such as weldment. Because it has better spatial resolution than the macro-range technology. The nano-range technology (called nanoindentation technique) of mgf-load level is basically used to evaluate hardness and modulus of micro- and nano-materials. Moreover, many researches are going on to measure tensile properties and residual stress. The nanoindentation technology is easy to be applied to the various fields, such as semiconductor devices, multiphase materials, and biomaterials, though other methods are too difficult to be applied due to dimensional or environmental limitations. On the basis of these accomplishments, the international and the domestic standards are being established.