• Title/Summary/Keyword: 바닥 충격음 완충재

Search Result 38, Processing Time 0.023 seconds

Floating Floor of Multi-supporting System ( II ) (복합지지구조를 가진 뜬바닥 시스템 (II))

  • 박영환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.293-295
    • /
    • 2004
  • In this research, we suggest the effective technique that the thickness of slab isn't increased, and considering proper shock absorbing material and supporting point, we make the floating floor which has multi-supporting system floating floor. As the result, it is effective in reduction of heavy weight system as well as one of light weight

  • PDF

Floating Floor of Multi-Supporting System (복합지지구조를 가진 뜬바닥 시스템)

  • 박영환;정환돈;오호진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.928-931
    • /
    • 2003
  • In this research, we suggest the effective technique that the thickness of slab isn't increased, and considering proper shock absorbing material and supporting point, we make the floating floor which has multi-supporting system floating nut. As the result, it is effective in reduction of heavy weight system as well as one of light weight

  • PDF

Correlation Between Dynamic Stiffness of Resilient Materials and Lightweight Floor Impact Sound Reduction Level (완충재 동탄성계수와 경량바닥충격음 저감량의 상관성)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.886-895
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material have a close relation with the floor impact sound reduction. In this study, to examine the relationship between dynamic stiffness and lightweight impact sound level, the dynamic stiffness and floor impact sound level of 51 resilient materials were measured. The impact sound level of each of these resilient materials, whose dynamic stiffness was measured, was measured before and after installation, and the level difference (${\Delta}L$) was analyzed. The result of test showed that the dynamic stiffness of resilient materials decreased, the lightweight impact sound level also decreased, and there was a correlation between the dynamic stiffness and the lightweight impact sound, especially in the low frequency domain.

Analysis of the Reduction of Light-weight Imapct Noise for Load Condition of Floating Floor (뜬바닥층의 하중조건에 따른 경량충격음 저감량 분석)

  • Kim, Myung-Jun;Lee, Sung-Ho;Yang, Jae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.356-360
    • /
    • 2006
  • Recently, for the purpose of improving the isolation performance of impact noise, many resilient materials have been installed in a residential building. As one of the reduction method for improving the performance of light-weight impact noise, this study is focused on the load condition of floating layer over resilient material. We studied the correlation between the mass or load of the floating layer and the reduction of light-weight impact noise by experiments in reverberation chamber for testing the impact noise. The results show that the reduction of impact noise is improved by increasing the mass per unit area of floating layer until about $140kg/m^2$. But the reduction is not obvious by adding extra mass on the floating layer.

  • PDF

A study to choose damping material used to reduce floor impact noise considering structural stability of Ondol layer (온돌층의 구조안정성을 고려한 바닥충격음 완충재의 선정기준에 관한 연구)

  • Im, Jung-Bin;Lee, Byung-Kwon;Go, Jong-Chul;Hwang, Kyu-Sub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.835-838
    • /
    • 2008
  • In this study, long-term compression displacement of damping materials used to reduce floor impact noise and compressive load that crack begins to happen in Ondol layers including the material were measured as basic research to make guide line for right choice of damping material considering structural stability of Ondol layer. From the result, it was found that compression displacement by elapsed time as well as early displacement of damping material when load is applied on Ondol layer are should be included in the guide line for the choice of damping materials. And no problem is expected to be in structural stability of Ondol layer in case choose a damping material that compression displacement at three months later from inflict load is within 10% than initial thickness.

  • PDF

The Effect of Dynamic Property of Absorbing Sheet on the Amplification of Heavy Weight Floor Impact Noise (완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구)

  • Hwang, J.S.;Moon, D.H.;Park, H.G.;Hong, S.G.;Hong, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.651-657
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50 dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6~7 dB compared to the conventional slab system at the optimal stud location.

A Study on the Heavy-weight Floor Impact Sound Reduction Evaluation of Characteristics by Resilient Materials (완충재 종류에 따른 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1145-1148
    • /
    • 2007
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

  • PDF