• Title/Summary/Keyword: 바닥 보강

Search Result 130, Processing Time 0.027 seconds

Case Study on the Explosive Demolition of the KOGAS Office Building in Bundang District (한국가스공사 분당사옥 발파해체 시공사례)

  • Kim, Sang-min;Park, Keun-sun;Son, Byung-min;Kim, Ho-jun;Kim, Hee-do;Kim, Gab-soo
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.48-61
    • /
    • 2018
  • This case study is concerned with the project of the explosive demolition for the KOGAS office building located in Bundang district in Seongnam city. Since the office building was a kind of long-span beam structures, a mechanical demolition method using jacking support systems was considered in the beginning of the project. With consideration of the excessive reinforcement cost, uncertainty of safety, and prolonged construction period, however, the original plan was later changed to use an explosive demolition method. For the purpose of protecting nearby buildings and facilities during the collapse process, the explosive initiation sequence was elaborately designed to bring down the building structure towards its front left corner. A total of over 550 electronic detonators (Unitronic 600) was used to sequentially initiate the explosives installed at appropriate columns in the first, second, and fifth floors. To diminish dust production, water bags of small and large sizes were respectively installed at each column and on the floors to be blasted. As such, every effort was exercised to mitigate overall noise, dust, and shock vibrations that could be generated during the explosive demolition process for the office building.

Examinations of Damage Mechanism on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥 슬래브의 손상 메커니즘 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.251-251
    • /
    • 2021
  • 최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로의 유입량이 설계 당시보다 증가하여 댐의 안전성 확보가 필요하다(감사원, 2003). 이에 건설교통부(2003)는 기후변화와 댐 노후화에 대비하여 치수능력증대사업을 추진하여 댐의 홍수배제능력을 확보하였고, 환경부(2020)에서는 40년 이상 경과된 댐을 대상으로 스마트 안전관리체계 구축을 통한 선제적 보수보강, 성능개선 및 자산관리로 댐의 장수명화를 목적으로 댐의 국가안전대진단을 추진하고 있다. 이에 본 연구에서는 댐 시설(여수로)의 노후도 평가 시 활용 될 수 있는 여수로 표면손상 원인규명에 대하여 3차원 수치모형(FLOW-3D 및 COMSOL Multiphysics)을 통해 검토하고자 한다. 연구대상 댐은 𐩒𐩒댐으로 지형 및 여수로를 구축하였으며, 계획방류량(200년 빈도) 및 최대방류량(PMF) 조건에서 모의를 수행하였다. 수치모의 계산의 정확도 검토를 위하여 Baffle의 설치를 통하여 시간에 따른 유량의 변화를 설계 값과 비교하였고 오차가 1.0% 이내를 만족하는 것을 확인하였다. 여수로 표면손상의 다양한 원인 중 기존연구(USBR, 2019)를 통하여 공동침식(Cavitation Erosion) 및 수력잭킹(Hydraulic Jacking)에 초점을 두었으며 방류조건 별 공동지수(Cavitation Index)산정을 통하여 공동침식 위험 구간을 확인하였다. 이음부의 균열 및 공동으로 인한 표층부 콘크리트의 탈락현상을 가속화시키는 수력잭킹 검토를 위하여 국부모형을 구축하였고 음압력(Negative Pressure), 정체압력(Stagnation Pressure), 양압력(Uplift Pressure)의 분포를 확인하였다. 최종적으로 COMSOL Multiphysics를 통하여 압력분포에 따른 구조해석을 수행하여 폰 미세스(Von Mises) 등가응력 및 변위를 검토하여 콘크리트의 탈락가능성을 확인하였다. 본 연구는 여수로 공동부 및 균열부에서의 손상메커니즘을 확인할 수 있는 기초적인 연구이지만 향후에는 다양한 지형조건 및 흐름조건에서의 압력분포 분석 및 유체-구조물 상호작용(Fluid-Structure Interaction, FSI)모의를 수행한다면 구조물 노후도 및 잔존수명 평가에 필요한 손상한계함수 도출이 가능할 것으로 기대된다.

  • PDF

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

Basic Study on Historical Repair Techniques for Landscape Architectural Facilities - Focusing on Government-managed Spaces in Joseon Dynasty - (전통조경 시설물의 역사적 수리기법에 관한 기초연구 - 조선시대 관영공간을 중심으로 -)

  • Kim, Min-Seon;Oh, Jun-Young
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.4
    • /
    • pp.8-20
    • /
    • 2023
  • Although the landscape architectural facilities need to be repaired according to historical and authentic techniques, the repair criteria of the standard specification for repairing cultural heritages still remain at a theoretical level, and there are little research analyzing detailed techniques from specific cases. This study discussed the repair techniques based on historical facts, around terraced flower beds, ponds, waterways and pavement in the government-managed spaces in the Joseon Dynasty. It analyzed the materials and finish of stone wall elements, the structural reinforcement and backfill materials, and topsoil surface protection measures, and drew out stones for foundation reinforcement, plastering material for agglutination, and stone processing techniques for the terraced flower beds. It examined the materials and structures of the rock revetment, foundation reinforcement and waterproofing techniques and drew out the outstanding characteristics of the foundation work, the recycle of used elements and the management of water quality, for the ponds. It primarily investigated the materials, foundation reinforcement and waterproofing techniques and discovered the repair techniques such as cover stone finishing methods, foundation and backfill materials, and flow reduction methods, for the waterways. Finally, it provided actual cases of the foundation composition, auxiliary materials and tools, and the use of cyperaceae and highlighted the existence of professional craftsmen called Bangjeonjang(方磚匠), for the pavement. This study is expected to be a staring point for discovering the repair techniques for landscape architectural facilities and used as basic data for revising specifications in the future.

Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine (대규모 노천 석탄광산의 사면 안정화를 위한 지하수 유동 체계 분석)

  • Ryu, D.W.;Kim, H.M.;Oh, J.H.;Sunwoo, C.;Jung, Y.B.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.248-260
    • /
    • 2009
  • With regard to oversea mineral resources development, recent trend has been changed from a simple capital investment to a direct development of the resources. In relation to the stability of a slope in large open-pit coal mine, groundwater system was investigated and the validity of horizontal drainage hole was evaluated in Pasir coal mine, Indonesia. In this work, various field tests were carried out for a characterization of groundwater system, which included in-situ permeability measurement, tracer test and monitoring of groundwater levels. Especially, the influence of SM river on the characteristics of the groundwater flow system was mainly inspected. For the permeability measurement, Guelph permeameter was employed, and was found that sandstone was more permeable than mudstone and coal seam. From a comparison of lithological structure and the results of groundwater level monitoring, sandstone and thin coal seam with fractures were found to be a main channel for groundwater flow. In the results of tracer tests, the effect of SM river on the groundwater system depends on the geological structure of its base. To identify the effect of horizontal drainage holes, 2-D groundwater modeling was performed. Four different cases were tested, which are different from the length of drainage hole and the existence of pond on top of the slope. To enhance the drainage effect and slope stability, the drainage hole should be drilled to the depth of coal seam layer, which provides a main pathway of groundwater flow and embedded by sandstone. For this purpose, correct identification of surrounding geology should be preceded.

A Study on the Displacement Behavior according to the Analysis Model of Ground Excavation (지반굴착 해석모델에 따른 변위거동에 관한 연구)

  • Chung, Jeeseung;Shin, Youngwan;Kim, Manhwa;Kook, Yunmo;Jeong, Kyukyung;Kim, Pilsoo;Lee, Sanghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.27-32
    • /
    • 2018
  • There were many ground excavation projects from past to present to make effective use of the limited land. And it is very important to predict the ground behavior depending on construction stage for ground excavation. Excavation of the ground involves changes in the stress and displacement of the ground around the excavated surface. Thus it affects the stability of the adjacent structure as well as the excavated surface. Therefore, it is very important to predict the ground behavior and stability of adjacent structure. And nowadays, numerical analysis methods are most often used to predict the effects of ground excavation. Recent, improvements of numerical analysis programs, along with improved computer performance, have helped solve complicated ground problems. However, except some specialized numerical analysis, most numerical analysis often predicts larger excavation floor displacement than field data due to adopt the Mohr-Coulomb analysis model. As a result, it raise the problem that increasing the amount of support on ground and structure. In this study, ground behavior analysis depending on analysis model (Mohr-Coulomb, Duncan-Chang, Modified Mohr-Coulomb and Hardening Soil model) has been carried out through the numerical analysis. When numerical analysis is carried out, this study is expected to be used as a basic data for adopting a suitable analysis model in various ground excavation project.

The Strength and Applications of OSB Gusset Trusses for Field Assembly (현장조립용 OSB 덧댐판 트러스의 강도 및 활용방안)

  • Kim, Tae-Woo;Ha, Bin;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Trusses are widely used for wooden houses in the areas where wood construction in generalized for residential housings such as North America, Australian, New Zealand. In Korea, joist and rafter system is generally used because of the production cost, transportation cost and lack of experience required for truss manufacturing. In this study, roof trusses and flat trusses were manufactured by using oriented strand board (OSB) gusset plates for field assembly and tested under bending load to obtain the allowable loads. The allowable load and the actual load of 6m span roof trusses were 10.60 kN and 5.26 kN, respectively, which is regarded to be sufficient for use in construction. The allowable load and the actual load of 6m span floor flat trusses were 7.18 kN and 7.43 kN, respectively. For flat trusses, the allowable load is slightly lower than the actual load but the difference in very small, and it is thought that flat trusses can be used for construction by applying small change of structures and members.

A study on better groundwater recharge in Seungchon SC-0 area (승촌 SC-0지역 더 좋은 지하수 함양 방안 연구)

  • Dong Gue Choe;Jong Duk Park;Dong Jin Kim;Seon Woong Ryu;Soo Jin Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.388-388
    • /
    • 2023
  • 영산강은 황룡강과 지석천이 합류하는 지점이기 때문에 많은 비가 내리면 홍수에 취약한 반면, 인근 지역인 나주시 노안면과 광주광역시 승촌동 지역의 지하수를 풍부하게 해주는 역할을 하고 있다. 특히, 승촌보 인근 지역은 겨울철 수온이 따뜻한 지하수를 활용하여 겨울철 미나리를 대규모로 재배하고 있다. 현재 승촌보 운영 수위를 관리 수위인 E.L.7.5m보다 1.5~2m 낮은 E.L.5.5~6.0m로 운영함에 따라 지하수 수위가 보 관리 수위보다 낮게 형성되고 있다. 이에 K-water 영산강보관리단은 여름철 홍수방어를 위해 설치된 배수문을 겨울철에 닫아 인공소류지를 형성함으로써 겨울철 미나리 재배지역에 지하수가 함양되는지 시험운영을 계획하였다. 배수문 시설을 관리하는 한국농어촌공사 광주지사와 광주광역시 남구청과 협의하였다. 이후 영산강유역환경청 민관협의체 위원장과 주민대표 통장님들께 방문 설명 등 지역주민들의 공감대 형성을 거쳐, '22년 9월 30일 승촌보 인근 승촌배수문 등 5개 배수문을 폐쇄하여 11월 30일까지 소류지에 물을 담수하였다. 또한, 소류지의 수위를 파악하기 위해 GPS 측량으로 해발 표고 산정한 간이 목자판 수위계를 설치하여 소류지내 수위를 모니터링하였다. 승촌배수문(#1)에서 발생한 누수는 스펀지를 바닥에 깔아 보강함으로써 누수를 줄여 소류지 수위를 E.L.6.7m 이상을 유지하였다. 그 결과 영산강에 인접한 SCM-008 지하수 관측소 데이터는 승촌보 운영 수위에 영향을 받고 있음을 확인할 수 있었다. 미나리 재배 기간인 3월에는 수막 재배로 인한 지하수 사용으로 수위가 가장 낮았으며, 여름철에 지하수 수위가 회복되는 패턴을 반복하였다. 10월~11월 시험운영기간 동안 SCM-005, -008, -101 지하수 관측정은 소류지와 중앙배수로에 가까울수록 인공 함양시 수위 상승효과가 크게 나타났으며, 평년(2020년~2021년) 대비 지하수위 상승을 확인하였다. SC-0 지역은 2022년 가뭄으로 다우년 대비 지하수 수위가 낮았으나, 시험운영 기간 중 지하수 수위 하강 속도가 늦춰지거나, 수위가 상승하는 것을 확인하였다. 또한, 인근 마을주민들에게 시험 운영 결과를 공유하였고, 소류지가 예년처럼 건천화되었을 때보다 지하수 수위상승과 중앙배수로나 소류지에서 양수하는 등 용수 이용에 도움이 되었다는 긍정적인 답변을 받았다. 따라서 2023년도에도 겨울철 미나리 재배 시기 동안 배수문을 닫아 소류지를 형성하여 지하수 함양에 도움이 되록하여, 미나리 지역의 농가 수익 증대에 보탬이 되도록 할 예정이다.

  • PDF

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.