• Title/Summary/Keyword: 바닥판 콘크리트

Search Result 326, Processing Time 0.026 seconds

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

고성능 콘크리트의 정의 및 교량 바닥판의 실용화

  • 정원기;이형준
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.70-84
    • /
    • 1999
  • HPC를 사용한 장기수명 바닥판 콘크리트의 시공에 관한 4가지 접근방법을 제시하였다. Nebraska, New Hampshire, Texas 그리고 Virginia 등 4개주의 프로젝트에서 보면 아래와 같이 여러 가지 유사성을 알 수 있었다. $\cdot$ HPC의 사용은 장기 수명의 교량 바닥판을 건설하기 때문에 life cycle cost와 유지관리비의 감소가 예상된다. $\cdot$ 교량 바닥판에 대한 HPC의 중요성은 더 큰 강도보다는 내구성과 시공성을 일관성있게 양호하게 개선한다는 것이다. $\cdot$ 그 지역의 재료와 기존의 방법을 가능한 최대한 범위로 사용한다. $\cdot$ 많은 실험실 및 현장 시험 배합표가 개발되었고 배합되었다. 성능 특성은 혼합 재료의 형태, 상품 및 배합에 따라 다르게 나타났다. $\cdot$ 향상된 성질을 갖는 균일하고 일관성 있는 제품의 사용에 덧붙여 적절한 시공 기술은 장기 수명의 콘크리트 구조물을 위해서는 필수적이다. $\cdot$ 알카리-골재 반응을 갖고 있는 지역이나 높은 황산염을 갖고 있는 지역과 같이 특별한 문제점이 예상되는 지역에서는 화학적 내구성을 검토하기 위해 별도의 실험이 필요하다. $\cdot$ 현장에서 소요의 성능특성을 얻기 위해서는 시작부터 모든 분야 사이의 원활한 의견 교환과 협력이 요구된다.

Control of Deck Cracking at Interior Supports of Continuous PSC-Beam Bridge (연속 PSC-Beam 교량의 지점부 균열제어)

  • 곽효경;서영재;정찬묵;박영하
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 1999
  • 이 연구는 2경간 연속 PSC-Beam 교량의 경간 내측 지지점의 바닥판에서 발생할 수 있는 균열의 제어에 관한 내용을 다루고 있다. PSC-Beam 교량은 주형인 PSC-Beam을 거치시킨후 바닥판을 현장타설 콘크리트로 시공된다. 이로 인하여 주형 콘크리트와 바닥판 콘크리트의 시간의존적 거동차이, 주형의 연속화에 따른 거동 등에 의하여 부모멘트가 가장 크게 걸리는 지점부에서 균열이 쉽게 발생된다. 따라서 이 논문에서는 2경간 연속 PSC-Beam 교량의 연속화에 따른 거동을 수치적 방법으로 해석하여 지점부 바닥판의 균열거동이 예측되었다. 이를 위하여 해석모델에는 콘크리트의 시간의존적 현상인 크리프와 건조수축이 고려되었으며, 2경간 연속 PSC-Beam 교량의 거동에 영향을 나타내는 여러 가지 인자가 고려되어 해석되었다. 끝으로 콘크리트의 모델식을 이용하여 지점부 균열을 억제하기 위한 현장에서 관리가능한 방안이 수치적으로 제안되었다.

  • PDF

An Experimental Study on the shear connection for UHPC Deck Bridge (초고성능 콘크리트 바닥판 교량의 전단연결부에 대한 실험적 연구)

  • Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae;Park, Sung-Young
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.29-33
    • /
    • 2011
  • The application of high performance materials for the deck can represent a fair alternative to reduce the weight of the deck and improve the econimic efficiency of the bridge even if high performance materials are costly. In UHPC(Ultra High Performance Concrete) bridges, it is necessary to verify that exiting headed stud can be used to transfer longitudinal shear forces across the steel-concrete interface. In this paper, the push-out tests are performed to analisys the composite behavior between UHPC bridge deck and steel girder. The ultimate strength of test specimens is proportional to the diameter of headed studs in push-out test for static loading. Test results show that the shear strength of headed stud is improved for the case of normal concrete bridge decks.

Design of Shear connection in Full-Depth Precast Concrete Deck Bridge (프리캐스트 콘크리트 바닥판 교량의 전단연결부 설계)

  • Chang, Sung Pil;Shim, Chang Su;Kim, Jong Hee;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.759-767
    • /
    • 1998
  • Full-depth precast concrete deck bridge has shear pockets for shear connectors that give composite action with steel girder. Strength and shear stiffness of shear connection that is needed to design shear connectors in case that shear pockets are filled with nonshrink mortar are investigated. In case that simple span full-depth precast concrete deck bridge is designed by allowable stress design, distribution of shear connector is suggested and details of precast panel that is placed on the support are proposed. Appropriate distribution of shear connectors in strength design and fatigue design is investigated through parameter analyses using partial interaction theory. The effects of nonshrink mortar strength is studied using the results of experiments and analyses and adequate strength is proposed.

  • PDF

Evaluation of Concrete Bridge Deck Deterioration Using Ground Penetrating Radar Based on an Extended Common Mid-Point Method (확장형 공통중간점법 기반 지표투과레이더를 이용한 콘크리트 교량 바닥판 열화 상태 평가)

  • Baek, Jong Eun;Lee, Hyun Jong;Oh, Kwang Chin;Eom, Byung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.82-92
    • /
    • 2012
  • This study proposed a new non-destructive evaluation method for concrete bridge deck deterioration using ground penetrating radar (GPR). To calculate dielectric constant of the concrete bridge deck, an extended common mid-point (XCMP) method was developed for a two-layered structure using an air-coupled GPR antenna setup. The deterioration conditions of the concrete bridge deck such as deterioration depth was evaluated based on the dielectric constant and surface-to-average dielectric constant ratio of the concrete bridge deck. A GPR field test was conducted on an old concrete bridge with asphalt concrete surfacing to validate the new evaluation method. The test results showed that the newly proposed method estimated pavement thickness and deterioration depth of the concrete deck in a reasonable level.

Behavior of Stud Shear Connectors in Precast Deck using Lightweight Concrete (경량콘크리트를 사용한 프리캐스트 바닥판에서 스터드 전단연결재의 거동)

  • Cho, Sun Kyu;Lee, Jong Min;Youn, Seok Goo;Choi, Yun Wang
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.227-236
    • /
    • 2008
  • The kind of concrete generally used in steel concrete composite bridges is normal-weight concrete whose unit weight is ${2,300kg/m^{3}}$. However, using lightweight concrete in composite bridges diminishes the sectional forces due to the self-weight of concrete decks. As a result, this will make the bridge design more economical. The type of concrete deck that could be adopted in composite bridges using lightweight con crete may be classified into Cast-In-Place (C.I.P.) concrete deck and precast concrete deck. These two types of decks have some differences with respect to structural behavior and constructional method, and hence,structural behavior of stud shear connectors that connect a concrete deck to a steel girder is changed with the type of deck used. In this study, push-out tests were conducted to evaluate the characteristics of static behavior of the stud shear connectors with a precast deck using lightweight concrete. Also, additional precast deck specimens with bedding layer that had shear keys and devices for transverse confinement of the bedding layer for the prevention of cracks occurring in the bedding layer were tested. These cracks The efficiency of these devices was then evaluated.

Theoretical Analysis of Interface Debonding on the Strengthened RC Bridge Decks (성능향상된 RC 바닥판의 계면파괴 해석)

  • 오홍섭;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.668-676
    • /
    • 2002
  • Especially, when orthotropic material such as uni-dierectionally woven Carbon Fiber Sheet, resisting only the unidirectional tension, is used to strengthening bridge deck, the direction and width of the strengthening material should be considered very carefully. Thus, analysis of the failure characteristics and the premature failure mechanism of the strengthened decks based on the test results are required. In this study, the premature failure due to the interface debonding of strengthening material of the strengthened deck slab are inquired into failure mechanism through both experiments results and analyses with prototype strengthened deck specimens using carbon fiber sheet. From the test results, interface debonding of strengthening material is occured at the crack face

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Bridge Deck Overlay Technology Using High Performance Concrete (고성능 콘크리트를 활용한 교량 교면포장 기술)

  • Park, Hae-Geun;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1113-1116
    • /
    • 2008
  • The application of High Performance Concrete (HPC) for protecting bridge deck concrete with micro-silica, fly-ash and ground granulated blast-furnace slag was introduced to North America in the early 1980's. This report introduces the literature reviews of high performance concrete for protecting concrete bridge deck and explains 2-different types of construction methods using this materials. One is high performance concrete overlay method and the other is full depth bridge deck method. Both methods have been successfully applied and demonstrated in north america. Especially, modified high performance concrete overlay method including silica-fume and PVA fiber has been successfully applied in korea also. Therefore, both methods that high performance concrete overlay and full depth bridge deck are considered as reasonable bridge deck protecting methods compared with the conventional bridge deck system using asphalt modified materials.

  • PDF