• Title/Summary/Keyword: 바닥판 상세

Search Result 40, Processing Time 0.023 seconds

Design of Shear connection in Full-Depth Precast Concrete Deck Bridge (프리캐스트 콘크리트 바닥판 교량의 전단연결부 설계)

  • Chang, Sung Pil;Shim, Chang Su;Kim, Jong Hee;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.759-767
    • /
    • 1998
  • Full-depth precast concrete deck bridge has shear pockets for shear connectors that give composite action with steel girder. Strength and shear stiffness of shear connection that is needed to design shear connectors in case that shear pockets are filled with nonshrink mortar are investigated. In case that simple span full-depth precast concrete deck bridge is designed by allowable stress design, distribution of shear connector is suggested and details of precast panel that is placed on the support are proposed. Appropriate distribution of shear connectors in strength design and fatigue design is investigated through parameter analyses using partial interaction theory. The effects of nonshrink mortar strength is studied using the results of experiments and analyses and adequate strength is proposed.

  • PDF

Design of longitudinal prestress of precast decks in twin-girder continuous composite bridges (2거더 연속강합성 교량의 프리캐스트 바닥판 종방향 프리스트레스 설계)

  • Shim, Chang Su;Kim, Hyun Ho;Ha, Tae Yul;Jeon, Seung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.633-642
    • /
    • 2006
  • Serviceability design is required to control the cracking at the joint of precast decks with longitudinal prestress in continuous composite bridges. Details of twin-girder bridges are especially complex not only due to their main reinforcements and transverse prestresses for the design of long-span concrete slabs, but also due to the shear pockets for obtaining the composite action. This paper suggests the design guidelines for the magnitude of the effective prestress and for the selection of filling materials and their requirements that would allow for the use of precast decks for twin-girder continuous composite bridges. The necessary initial prestress was also evaluated through long-term behavior analysis. From the analysis, existing design examples were revised and their effectiveness was estimated. When a filling material with a bonding strength higher than the requirement is used in the region of a high negative moment, a uniform configuration of the longitudinal prestressing steels along thewhole span length of continuous composite bridges can be achieved, which would result in the simplification of the details and the reduction of the construction costs.

Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials (GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구)

  • Jeong, Jin Woo;Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.337-346
    • /
    • 2005
  • A composite bridge deck system assembled from a modular profile with double-rectangular cell has been developed for highway bridges. This study is focused on the experimental characterization of flexure performance of pultruded GFRP deck under static loading. Several tests were conducted on single modules and adhesively bonded 2 and 5-modules. The specimen details such as dimensions, material properties and fiber architecture, and experimental set-up and testing procedure have been addressed. It is found that the presented GFRP composite modular deck is very efficient for use in bridges.

Fatigue Strength Evaluation of Steel-Concrete Composite Bridge Deck with Corrugated Steel Plate (절곡강판을 이용한 교량용 강-콘크리트 합성 바닥판의 피로 성능평가)

  • Ahn, Jin Hee;Sim, Jung Wook;Jeong, Youn Joo;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.731-740
    • /
    • 2008
  • This paper deals with the fatigue behavior and strength of a new-type of steel-concrete composite bridge deck. The new-type composite bridge deck consists of corrugated steel plate, welded T-beams, stud-type shear connectors and reinforced concrete filler. A total of eight composite bridge deck specimens were fabricated, the fatigue tests were conducted under four-point bending test with three different stress ranges in constant amplitude. According to the test results, the fatigue crack generated at the welding part of the corrugated steel plate, progressed down to the bottom of the steel plate and encountered the crack, which came out from the opposite side at the same position. After the two cracks were connected at the bottom of the steel plate, the lower flange was cut off and the fatigue crack developed up to the T-beam. And the displacements and strains of fatigue test specimens were increasing with cyclic loading number, these were changed sharply at the fatigue failure. The fatigue results are compared with the design S-N curves specified in the Korea Highway Bridge Design Specifications and data in NCHRP 102 and NCHRP 147 report. The new-type composite bridge deck has a stress category of C, which means that new-type composite bridge deck can be designed by the current fatigue design specifications provided for steel members.

Fatigue Behavior of Steel-Concrete Composite Bridge Deck with Perfobond Rib Shear Connector (유공판재형 전단연결재를 갖는 강-콘크리트 합성바닥판의 피로거동에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Jeong, Youn Ju;Kwon, Soon Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.71-80
    • /
    • 2010
  • Bridge deck is directly influenced by environment and vehicle load, it is easily damaged so that it requires an appropriate repair and retrofit. Therefore, developing a bridge deck with high durability is necessary in order to minimize the maintenance of bridge deck and use it to its design life. In this study, static test was carried out to evaluate a fatigue capacity of steel-concrete composite deck, which was newly developed by supplementing problems of existing reinforced concrete deck. Based on results from the static test, fatigue load was decided, and fatigue test was conducted under the constant amplitude repeated load. From the fatigue tests, the S-N curve regarding principle structural details of composite deck was made, and characteristics of fatigue behavior was estimated by comparing and evaluating it with fatigue design criteria. In addition, fatigue design guideline was presented. As a result, it is found that each structural details of composite deck proposed by this study, such as upper flange of corrugated steel plate and middle section of it, shear connector and lower flange of corrugated steel plate, is satisfying the fatigue strength.

Vibration Analysis and Evaluation for the Slab of Housing (공동주택 바닥판의 진동해석 및 평가)

  • Park, Kang-Geun;Kim, Yong-Tae;Choi, Young-Wha;Kim, Han-Choul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.246-255
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in apartment building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of apartment building.

  • PDF

Experimental Study on the Flexural Behavior of Inverted T-Shaped Steel·Concrete Composite Deck for Bridges (역T형강·콘크리트 합성바닥판의 휨거동에 관한 실험적 연구)

  • Kim, Sung Hoon;Park, Young Hoon;Lee, Seung Yong;Choi, Jun Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.331-340
    • /
    • 2008
  • This study is to suggest the details of new concept of bridge deck. Experimental studies on the behavior of a inverted T-shaped steelconcrete composite deck were carried out. The part of inverted T-shaped steel is embedded in concrete. Reinforced concrete deck specimen and composite deck specimens were fabricated and static bending fracture tests were conducted. The ultimate strength and fracture strength of specimens were evaluated. The effects of shear hole crossing bars of composite deck were also analyzed. From the results of experiments, composite deck with shear hole crossing bar increased shear strength, and showed typical tensile failure. Ultimate strength and fracture strength of composite deck with shear hole crossing bar are higher than those of reinforced concrete deck. The displacement of composite deck is higher than that of reinforced concrete deck.

Practical Vibration Analysis for the Floor of Dwelling Building (공동주택 바닥판에 대한 실용적인 진동해석)

  • Park, Kang-Geun;Kim, Yong-Tae;Choi, Young-Wha
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.65-73
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in dwelling building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of housing.

  • PDF

FE Analysis on Maglev Guiderail Connection System (자기부상열차 가이드레일 연결시스템의 유한요소 해석)

  • Jin, Byeong-Moo;Lee, Yun-Seok;Kim, In-Gyu;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.203-204
    • /
    • 2009
  • The maglev guiderail systems, which receive directly the live load of maglev train and transfer the load to the main girder, is a important constituent in guideway system. As a process of development of maglev guideway girder adopting the precast decks, static and fatigue loading tests of the connections systems of precast deck and guiderail have been accomplished. In this stude, the structural characteristics of precast deck-guiderail connection systems are being evaluated by performing a detailed finite element analyses.

  • PDF

Structural Performance of Pre-tensioned Half-depth Precast Panels (프리텐션 반두께 바닥판을 갖는 바닥판의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1707-1721
    • /
    • 2014
  • Half-depth panels were developed with the merits of CIP (Cast In Place) decks and precast decks for constructability and fast construction. In this paper, details of half-depth panels with pre-tensioning were suggested. For evaluation of structural performance, five half-depth panel specimens were fabricated and static tests were conducted. The cross-sections of these specimens were composed of pre-tensioned half-depth panels and pre-tensioned two-span half-depth panels. Test parameters were the amount of the prestressing force and the longitudinal reinforcements. Static tests on simply-supported slabs showed that ultimate strength was 1.55 times greater than calculated nominal strength. The flexural strength was only 10 % increased and the influence on crack width control was negligible when the member of tendons was increased twice. For two-span continuous specimens, the ultimate strength increased 1.2 times and 1.38 times respectively as the reinforcement was additionally provided. The verified half-depth panels by this research can be effectively utilized for the fast replacement or construction of bridges.