• Title/Summary/Keyword: 바나듐계 촉매

Search Result 9, Processing Time 0.023 seconds

Optimization of Preparation Conditions of Vanadium-Based Catalyst for Room Temperature Oxidation of Hydrogen Sulfide (황화수소 상온 산화를 위한 바나듐계 촉매의 제조 조건 최적화 연구)

  • Kang, Hyerin;Lee, Ye Hwan;Kim, Sung Chul;Chang, Soon Woong;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.326-331
    • /
    • 2021
  • In this study, the preparation conditions for a TiO2-based vanadium-based catalyst for oxidizing hydrogen sulfide at room temperature were optimized. Four types of commercial TiO2 were used as a catalyst support and the performance evaluation of hydrogen sulfide oxidation at room temperature of V/TiO2 by varying vanadium contents prepared using the impregnation method was performed. Among the types of TiO2 tested, it was confirmed that the catalyst with the vanadium content of 5% and based on TiO2(A) has the best hydrogen sulfide conversion rate of 58%. By comparing the physical and chemical properties of the catalyst, the specific surface area of the support and the species of dominant vanadium are the major factor in catalyst performance. In order to confirm the regeneration characteristics of the catalyst with reduced activity, heat treatment was performed at 400 ℃ for 2 h, and the amount of hydrogen sulfide oxidation decreased by 10% due to the partial deposition of sulfur in the regenerated catalyst, but it was confirmed that the initial performance was similar.

$NO_x$ Removal of Vanadium based Catalyst with Constituent Compositions (조성성분에 따른 바나듐계 촉매의 탈질특성)

  • Baek, Geun-Ho;You, Seung-Han;Kim, Sang-Wung;Park, Young-Ok;Cha, Wang-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.294-297
    • /
    • 2010
  • 본 연구논문에서는 주요 대기 오염물질인 $NO_x$를 처리하기 위해 다양한 종류의 촉매를 사용하여 탈질 특성을 조사하였다. 여러 종류의 담체에 다양한 종류의 활성물질을 답지한 촉매를 사용하였으며, 고정층 반응기를 이용하여 반응온도, 공간속도, 수분함량 등과 같은 공정조건에 따른 탈질효율도 측정하였다. 전체적으로 담지된 활성물질이 증가할수록 탈질효율도 증가함을 알 수 있었다.

  • PDF

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration (바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구)

  • Jung, Min Gie;Hong, Sung Chang
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.315-324
    • /
    • 2021
  • In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite (바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가)

  • Jeong, Bora;Lee, Heesoo;Kim, Eok-Soo;Kim, HongDae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.252-256
    • /
    • 2015
  • Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

Effect of Various Supports on the Catalytic Performance of V-Sb Oxides in the Oxidative Dehydrogenation of sobutane (이소부탄의 산화탈수소반응에 대한 여러 담지체에 따른 V-Sb 산화물 촉매 성능 효과)

  • Shamilov, N.T.;Vislovskiy, V.P.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.81-85
    • /
    • 2011
  • $V_{0.9}Sb_{0.1}O_x$ systems, bulk and deposited on different supports (five types of $\gamma$-aluminas, $\alpha$-alumina, silica-alumina, silica gel, magnesium oxide), have been tested in the oxidative dehydrogenation (ODH) of iso-butane. Catalytic performance of VSb oxides has shown to be highly dependent on the support and the nature of the support decreasing in a series: $\gamma$-$Al_2O_3$ > $\alpha$-$Al_2O_3$ > Si-Al-O > $SiO_2$ $\approx$ MgO $\gg$ unsupported. Variation of the V-Sb-O-loading in the studied range of coverage (0.5-2 theoretical monolayer) only slightly influences the catalysts' activity and selectivity. The best catalytic performance of $\gamma$-alumina-supported $V_{0.9}Sb_{0.1}O_x$ systems can be explained by the optimal surface interaction between support and supported components resulting in the formation of well-spread amorphous active $VO_x$-component with vanadium in a high oxidation state.

Effect of Water on the Kinetics of Nitric Oxides Reduction by Ammonia over V-based Catalyst (바나듐계 촉매상에서 암모니아를 이용한 질소산화물의 환원반응속도에 수분이 미치는 영향에 관한 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.73-82
    • /
    • 2012
  • The main and side reactions of the three selective catalytic reduction (SCR) reactions with ammonia over a vanadium-based catalyst have been investigated using synthetic gas mixtures in the temperature range of $170{\sim}590^{\circ}C$. The three SCR reactions are standard SCR with pure NO, fast SCR with an equimolar mixture of NO and $NO_2$, and $NO_2$ SCR with pure $NO_2$. Vanadium based catalyst has no significant activity in NO oxidation to $NO_2$, while it has high activity for $NO_2$ decomposition at high temperatures. The selective catalytic oxidation of ammonia and the formation of nitrous oxide compete with the SCR reactions at the high temperatures. Water strongly inhibits the selective catalytic oxidation of ammonia and the formation of nitrous oxide, thus increasing the selectivity of the SCR reactions. However, the presence of water inhibits the SCR activity, most pronounced at low temperatures. In this study, the experimental results are analyzed by means of a dynamic one-dimensional isothermal heterogeneous plug-flow reactor (PFR) model according to the Eley-Rideal mechanism.

The Effect of SO2 in Flue Gas on the SCR Activity of V/TiO2 (배가스 중 SO2가 V/TiO2 SCR활성에 미치는 영향)

  • Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.490-497
    • /
    • 2006
  • $V_{2}O_{5}$/$TiO_{2}$ catalyst can be deactivated by ammonium salts formed by $SO_{2}$ oxidation and unreacted ammonium in presence of $SO_{2}$ in flue gas. The deactivation of catalyst by $SO_{2}$ depends on the $SO_{2}$ oxidation to $SO_{3}$. The oxidation of $SO_{2}$ is weakly affected by oxygen concentration, and strongly by the amount of vanadium loaded onto titania supports. Because unreacted ammonia is one of elements to form the ammonium salts, it is important to control the mole ratio of $NH_{3}/NOx$ in SCR. Thus the experiments about $NH_{3}/NOx$ were carried out. The reason of low activity of catalyst deactivated by ammonium salts is the change of pore volume. And TPD (Temperature Programmed Decomposition) was performed to find the decomposition of ammonium bisulfate on deactivated catalyst.

Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique (SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출)

  • Sola, Ana Belen Cueva;Jeon, Jong-Hyuk;Lee, Jin-Young;Parhi, Pankaj Kumar;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2020
  • Selective catalytic reduction (SCR) has been a promising technology to reduce the air pollution caused by nitrogen oxides (NOx) in several industries. The consumption of SCR catalysts increases every year as technology evolves, however those have a limited lifespan and usually end up in landfills after they deactivate. Currently, the most widely used catalyst for and stationary applications is V2O5-WO3/TiO2 which can contain around 50% wt V2O5 and 7-10% wt of WO3. The vast uses for both vanadium and tungsten and the worldwide interest in recycling methods that allow for the extraction of metals from secondary sources represent the major motivation for this research. The extraction time, pH dependency, extraction concentration studies were carried out using Aliquat 336 in exxol D80 as the extractant. It was determined that to optimize the extraction of both metals 30min of contact time with an organic phase containing 0.5mol/L of Aliquat 336 are needed at a slightly acidic pH (~5.0). In addition, counter McCabe-Thiele studies allowed us to determine that one stage is necessary for the removal of 99% of vanadium while 2 stages are necessary for the extraction of tungsten and counter current simulations proved that the theoretical approach was correct.