• 제목/요약/키워드: 밀링 가공

검색결과 384건 처리시간 0.03초

고속 볼앤드밀링에서 공구마모를 고려한 공구의 가공경사각 선정 (Selection of Machining Inclination Angle of Tool Considering Tool Wear in High Speed Ball End Milling)

  • 고태조;정훈;김희술
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.135-144
    • /
    • 1998
  • High speed machining is a key issue in die and mold manufacturing recently. Even though this technology has great potential of high productivity. tool wear accelerated by high cutting speed to the hardened materials is other barrier. In this research, we attempted to reduce tool wear by considering tool inclination angle between tool and workpiece. The boundary lines describing machined sculptured surfaces were represented by both of cutting envelop condition and the geometric relationship of successive tool paths. Chip cross section, and cutting length could be obtained from the calculated cutting edge and the rotational engagement angle. From the simulation results, machining inclination angle of tool of $15^\circ$ was good enough from the point of tool wear and cutting force, and this value was verified through the cutting experiment of high speed ball end milling.

  • PDF

밀링머신의 절삭력 제어를 통한 표면굴곡도 향상에 관한 연구 (A Study on the Improvement of Surface Waviness by Cutting Force Control)

  • 오준호;정충영
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.206-214
    • /
    • 1988
  • 본 논문에서는 엔드 밀링에서 황삭 작업시 비교적 절삭 모델의 정립이 용이한 하향 밀링(down milling)의 경우를 대상으로, 가공면 오차의 주 원인인 공구와 공작물 사이의 처짐과 절삭력의 특정한 동적관계를 유도하고, 그 절삭력을 일정하게 유지하도록 공구의 이송속도를 온라인으로 제어하였다.

고속 정면밀링가공을 위한 진동 파라미터에 관한 연구 (A Study on the Vibration Parameters for High Speed Face Milling Machining)

  • 장성민;이승일
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4149-4155
    • /
    • 2013
  • 더 빠른 절삭속도와 이송속도를 위한 고속가공은 표면품위와 재료제거율의 증가를 초래한다. 이 논문은 고속가공을 위한 정면밀링커터를 사용한 가공에서 획득된 진동특성에 관한 절삭조건의 영향을 연구하였다. 이 논문에서, 직교배열 테이블에 기초한 다구찌 실험계획법은 고속 정면밀링커터를 사용한 진동특성을 연구하기 위해 적용되었다. 실험조건은 직교배열 $L_{27}(3^{13})$ 을 사용하였다. 실험의 계획과 분석은 S/N비(신호 대 잡음비)와 분산분석을 이용하여 진동에 관한 절삭조건의 영향을 연구하기 위해 수행되었다. 절삭 파라미터 즉 이송속도, 챔퍼길이, 절삭속도 그리고 절삭깊이는 진동 특성치를 고려하여 최적화 되었다.

밀링가공시 버 형성 예측을 위한 전문가 시스템 개발 (II) - 복잡한 형상의 피삭재와 다중경로에 의한 밀링가공시 (Development of Expert System for Burr Formation Prediction in Face Milling (II) - In Milling Multi Featured workpiece with Multi)

  • 고성림;김영진;장재은;이장범;김지환
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.25-33
    • /
    • 2003
  • A burr has been defined as undesirable projection of material formed as a result of plastic flow from a cutting or shearing operation. It is unavoidable in all kinds of machining operation. As a result, burr makes troubles on manufacturing process due to deburring cost, quality of products and productivity. In this study, the primary interest is about exit burr. The burr formation mechanism in each type of burr is classified. Data bases are developed to predict burr formation result. In the milling operation, we develop an algorithm to analyze the burr formation mechanism by the geometrical analysis on the multi featured workpiece with multi cutting path. The algorithm includes three steps, i. e., the feature identification, the cutting condition identification, and the analysis on exit burr formation. We can predict which portion of workpiece would have the exit burr in advance so that we can manage to find a way to minimize the exit burr formation in an actual cutting. Also, this algorithm can be implemented in a commercial CAM package so that we can simulate the NC code to review the burr formation in advance.

밀링 가공 시 채터 진동 예측의 해석적 방법 (Analytical Prediction of Chatter Vibration in Milling Process)

  • 정낙신;양민양
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.210-217
    • /
    • 2009
  • This paper presents the analytical prediction of stability lobes in milling. The stability lobes are obtained by measuring the frequency response function (FRF) of a machining center at the cutting point of the end mill cutter, identifying cutting constants, and approximating cutting force coefficients. The stability lobes are experimentally verified through cutting tests.

미세 폴 구조물 가공을 위한 마이크로 앤드밀링 기술 (Micro End-milling Technology for Micro Pole Structures)

  • 제태진;최두선;이응숙;홍성민;이종찬;최환
    • 한국기계가공학회지
    • /
    • 제4권4호
    • /
    • pp.7-13
    • /
    • 2005
  • In the case of fabricating micro pole structures such as column, square-pole and gear shaft by the micro end-milling process, it can be useful in the fields of industry, for example, micro parts, electrode for electrical discharge machining and micro mold for injection molding. In this study, machining factors and the process were analyzed. Machining experiments of various micro pole configurations were performed. Analysis of the change and effect of the cutting force according to the machining conditions was carried out. An analytical study of the deformation of the micro pole caused cutting conditions and cutting force through the finite element method and ANSYS program was carried out. As a result, this research presented a method of fabricating the column pole of below $100{\mu}m$ diameter with high aspect ratio by using micro end-milling process, and based on that, a method of fabricating a variety of applicable structures. Also the minimum size of the pole capable of fabricating through theory and experiment were demonstrated.

  • PDF

유한요소해석과 가공실험을 통한 마이크로 밀링가공의 가공특성평가 (An Evaluation of Machining Characteristics in Micro-scale Milling Process by Finite Element Analysis and Machining Experiment)

  • 구민수;김정석;김평호;박진효;강익수
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.101-107
    • /
    • 2011
  • Analytical solution of micro-scale milling process is presented in order to suggest available machining conditions. The size effect should be considered to determine cutting characteristics in micro-scale cutting. The feed per tooth is the most dominant cutting parameter related to the size effect in micro-scale milling process. In order to determine the feed per tooth at which chips can be formed, the finite element method is used. The finite element method is employed by utilizing the Johnson-Cook (JC) model as a constitutive model of work material flow stress. Machining experiments are performed to validate the simulation results by using a micro-machining stage. The validation is conducted by observing cutting force signals from a cutting tool and the conditions of the machined surface of the workpiece.