• Title/Summary/Keyword: 밀리미터파 장치

Search Result 26, Processing Time 0.025 seconds

Analysis of Neighbor Discovery Process with Directional Antenna for IEEE 802.15.3c (IEEE 802.15.3c 기반에서 지향성 안테나를 사용했을 때의 이웃장치 탐지과정 분석)

  • Kim, Mee-Joung;Lee, Woo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1B
    • /
    • pp.9-14
    • /
    • 2012
  • The neighbor discovery using directional antennas in mmWave band is a prerequisite for communications and this issue is crucial and urgent. In this paper, the synchronized, direct, two-way directional neighbor discovery process is analyzed mathematically for mmWave WPANs. The analysis is based on the values which are derived from the effect of using directional antennas. The neighbor discovery probability for a given amount of time is considered and several performance measures such as the optimal sojourn time are derived in closed forms. Numerical results are obtained using parameters based on the IEEE 802.15.3c. The mathematical analysis provides the theoretical basis for the directional neighbor discovery process.

LMA 및 VLBI 계획에 대하여

  • 정현수
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.23-25
    • /
    • 1993
  • 밀리미터파 영역에서의 관측장치를 살펴보면, 단일망원경을 제외하고도 세계의 밀리미터파 간섭계의 그 어느 것이나 현재 확장작업을 진행중이며, 또 밀리미터파서브밀리미터파영역에서의 고분해능 관측의 천문학적 성과를 올리기 위해 서브밀리미터파 간섭계의 건설계획을 추진하고 있고, NARO에서도 NMA계획을 발표하여 그 준비가 착착 진행되고 있다. 이들에 대해, 일본의 NRO에서도 HMA확충계획을 진행시키는 한편, 대형밀리미더파 간섭계(LMA) 계획을 발표하고 있다. 따라서 일본 내부에서는 SUBARU 망원경건설 이후의 천문학 분야에서의 차기 대형 장래계획으로서 LMA가 자리잡고 있다. 따라서 본 발표에서는, 세계의 이러한 추세 속에서 향후 5년 내지는 10년 이후를 내다보고 우리나라 전파천문학은 앞으로 무엇을 해 나가야 할 것인가, 그리고 무엇이 우리의 실정에 가장 적합한 천문학인지를 생각해 보기 위한 한 방편으로, 측지적인 목적과 전파천문학적인 견지에서의 국내 및 국외 VLBI Network 형성과 LMA 계획을 분석해보고자 한다.

  • PDF

Development of Simulated signal generator for Small Millimeter-wave Tracking Radar (소형 밀리미터파 추적 레이다용 모의신호 발생장치 개발)

  • Kim, Hong-Rak;Park, Seung-Wook;Woo, Seon-Keol;Kim, Youn-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • A small millimeter-wave tracking radar is a pulse radar that searches, detects, and tracks a target in real time through a TWS (Track While Scan) method on a sea-going traps target with a large RCS running at low speed. This paper describes the development of a simulated signal generator to verify the performance of a small millimeter wave tracking radar in laboratory anechoic chamber environment. We describe a GUI program for testing and performance analysis in conjunction with hardware configuration and tracking radar, and verified the simulated signal generator implemented through performance test.

Development and Characterization of Mobile Transceiver for Millimeter-Wave Channel Sounding Measurement (밀리미터파 채널사운딩 측정을 위한 이동형 송수신 장치의 개발과 특성평가)

  • Jonguk Choi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 2024
  • In this paper, the design, implementation, and analysis of a device capable of transmitting and receiving millimeter-wave signals and performing channel sounding measurements in atmospheric conditions at distances of up to approximately 10km outdoors are presented. The device is expected to be instrumental in studying the propagation characteristics of millimeter-wave frequencies. Utilizing data such as received power levels and power delay profiles (PDPs), comparisons with predicted values using path loss, K-factor, and other propagation models are facilitated. The mobile transceiver unit, integrated onto a vehicle platform, allows for flexible adjustment of transmitter and receiver positions, while synchronization issues with distance are mitigated using a rubidium atomic clock. Furthermore, automatic boresight alignment using scanning techniques is employed to locate the main sector of the antenna.

Development of a Signal Acquisition Device to Verify the Applicability of Millimeter Wave Tracking Radar Transmission and Receiving Components (밀리미터파 추적레이더 송·수신 구성품의 적용성 검증을 위한 신호획득장치 개발)

  • Jinkyu Choi;Youngcheol Shin;Soonil Hong;Han-Chun Ryu;Hongrak Kim;Jihan Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.185-190
    • /
    • 2023
  • Recently, tracking radar requires the development of millimeter wave tracking radar to acquire target information with high resolution in various environments. The development of millimeter wave tracking radar requires the development of transmission and receiving components that can be applied to the millimeter wave tracking radar, as well as verification of the applicability of the tracking radar. In order to verify the applicability of the developed transmitting and receiving components, it is necessary to develop a signal acquisition device that can control the transmitting and receiving components using the operating concept of a tracking radar and check the status of the received signal. In this paper, we implemented a signal acquisition device that can confirm the applicability of components developed for millimeter wave tracking radar. The signal acquisition device was designed to process in real time the OOOMHz center frequency and OOMHz bandwidth signals input from 4 channels to verify the received signal. In addition, component control applying the tracking radar operation concept was designed to be controlled by communication such as RS422, RS232, and SPI and generation of control signals for the transmission and receiving time. Lastly, the implemented signal acquisition device was verified through a signal acquisition device performance test.

Mathematical Analysis for Efficiency of Eavesdropping Attack Using Directional Antenna in mmWave Band (밀리미터파 대역에서 지향성 안테나 사용에 의한 도청공격 대응 효율성의 수학적 분석)

  • Kim, Meejoung;Kim, Jeong Nyeo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1074-1077
    • /
    • 2013
  • This paper analyzes the benefit of using directional antennas against eavesdropping attack in millimeter wave (mmWave)-based networks. All devices are equipped with a directional antenna or an omni-directional antenna in a single-hop communications. The probability of a device being detected by an eavesdropper is analyzed based on the exposure region of a device. The relative detection rate is introduced to represent the benefit of using directional antenna. Numerical results show that there exists an optimal number of devices that maximizes the detection probability and it varies according to the parameters such as antenna beamwidth. It shows that the use of directional antenna enables to protect the devices from the detection by an eavesdropper for almost the whole situation in mmWave band communication.

A Metasurface Improving the Fixed Function of a Ready-Made mm-Wave Antenna Module (밀리미터파 안테나 모듈 기성품의 고착화된 기능을 향상시키는 메타 재질 표면)

  • Jaewon Koh;Seongbu Seo;Yejune Seo;Sungtek Kahng
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.225-231
    • /
    • 2024
  • In this article, a new approach is presented to improve the unchangeable function of a ready-made millimeter-wave antenna system. By designing a metamaterial surface appropriate for the given geometry and fixed electrical characteristics of the device, the properties of the radiated fields of the RF product are changed to have directivity and higher antenna gain. Unlike other designs using periodic metamaterials for a single patch, an aperiodic metasurface is developed to handle two patches. For a higher received signal strength and a longer RF path in the 24 GHz-radio link, an aperiodic metasurface enhances the radiated fields by 10 dB.

Technology Trend of Forward Looking Millimeterwave Radar (전방감지용 밀리미터파 레이더 기술 동향)

  • Hong, J.Y.;Kang, D.M.;Yoon, H.S.;Shim, J.Y.;Lee, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.22 no.5
    • /
    • pp.35-45
    • /
    • 2007
  • 전방감지용 밀리미터파 레이더는 밀리미터파를 이용하여 자동차 등에 부착하여 송신파와 수신파 사이의 도플러 주파수 편이를 이용하여 선행차량 또는 전방의 장애물과의 거리와 상대속도를 판별하는 장치로서 적응형 순항제어 시스템(adaptive cruise control system) 등에 이용되는 핵심 기술이다. 적응형 순항제어 시스템이란 레이더 센서를 통하여 전방 선행 차량, 장애물의 속도 및 거리를 측정하여 차량의 충돌 경고, 주행 상황에 따른 자동적인 감속 및 가속, 정속 등 안전주행을 가능하도록 하는 기술이다. 본 기술 동향 분석보고서는 전방감지용 레이더 센서에 관한 기술 동향을 살펴보기 위하여 미국, EU, 일본, 한국의 전방감지용 레이더 센서에 관한 특허를 1991년부터 2005년까지의 특허출원을 중심으로 연도별 추이와 국가별 특허출원 동향, 출원인별 특허출원 동향 등을 분석하여 전방감지용 레이더의 세계 기술 추이에 대하여 알아보았다.

Image Measurement and Processing using Near-Range Passive Millimeter-wave Imaging System (근거리 수동 밀리미터파 이미징 시스템을 이용한 영상 측정과 영상처리)

  • Jung, Kyung Kwon;Yoon, Jin-Seob;Chae, Yeon-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.159-165
    • /
    • 2015
  • In this paper, we designed and tested of the passive millimeter-wave imaging system in near range. The proposed passive millimeter-wave imaging system consists two parts. The first part is a 94 GHz band millimeter imaging sensor which is coupled to an antenna, two LNAs, and a diode detector. The second part is a control unit. The control unit is consists of the 2-axes Cartesian robot, the data acquisition (DAQ), and imaging program. The 2-axes Cartesian robot should be able to scan a 2-D image of the metalic tools, IC card and plastic objects, with a raster scanning method. The passive millimeter-wave image of $20{\times}20$ pixels is acquired within less than 60s, and is immediately displayed and stored for post processing.In order to improve the image quality, interpolation methods are applied.

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (반사판을 이용한 밀리미터파 수동 이미징 시스템 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Jung, Kyung-Kwon;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • We have developed a millimeter-wave passive imaging system with reflector for detection of concealed objects. We have designed a millimeter-wave sensor, control device for reflector control, and a lens for focusing of millimeter-wave signal at center frequency of 94GHz. DC signal from millimeter-wave sensor output is filtered by low pass filter and amplified by video amplifier, and then converted into digital signal by using ADC/DAQ. This signal is image processed by computer, and it is possible to obtain millimeter-wave passive image with resolution of $18{\times}64$ pixel using the fabricated system. It is shown that we can obtain the image of men and concealed object with the system.