• Title/Summary/Keyword: 밀도보정

Search Result 243, Processing Time 0.03 seconds

Calibration Technique of Liquid Density Measurement using Magnetostriction Technology (자기 변형 기술을 이용한 액체 밀도 측정의 보정 기술)

  • Seo, Moogyo;Hong, Youngho;Choi, Inseoup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.178-184
    • /
    • 2014
  • In this study, we develop liquid density sensor by measuring of balanced position between gravity and bouyancy, corresponding to liquid density, using distance measuring by magnetostriction technology. For improvement of accuracy of liquid density sensor system. And we derive the related equation between liquid density and moving distance of density sensor, and make the calibration method for liquid density sensor by magnetostriction technology. Using fabricated liquid density sensing system and derived equation, have measured the density of several liquids. And compare it to measuring results using Oscillating U-tube type high accuracy density meter, having 0.000001 g/cc resolution. The deviation of results between two density measuring systems was less than 0.001 g/cc.

보일러 드럼 수위 보정이 미치는 영향에 대한 시뮬레이션

  • 김응석
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.235-235
    • /
    • 1999
  • 화력 발전소의 드럼형 보일러 제어 프로세스에 있어 드럼 수위(Drum Level)의 정확한 측정은 매우 중요하다. 만약 드럼 수위가 불안정하게 되면 급수 유량 제어가 불안정하여 증기 온도 제어를 불안정하게 하고, 증기 온도의 변화는 보일러 출구 증기 압력을 변화시켜 연소 제어 계통을 불안정하게 한다. 결국 드럼 수위의 불안정은 발전소 전체 프로세스를 불안정하게 한다. 또한 드럼 수위의 오지시로 인해 수위가 과도하게 높아져 물이 터빈에 유입되면 터빈 날개의 파손을 가져오고, 반대로 수위가 너무 낮으면 과열로 인한 보일러 튜브의 파열을 초래하기도 한다. 특히, 보일러의 기동시 또는 과도상태일 때는 드럼 압력의 변화에 따른 water 및 steam의 밀도 변화로 인한 오차가 크며, 압력 대 밀도(비중)의 관계가 비선형 함수이므로 별도의 압력검출기에 의해 드럼 압력을 측정하여 압력 변화에 따른 오차를 보정해주어야 하는데 아날로그 시스템의 경우에는 이러한 압력 수위 보정을 기준 압력에 대해서만 하므로 기동시 또는 과도상태에서의 수위 제어에 많은 문제점이 있다. 본고에서는 이러한 보일러 드럼 수위 압력 보정의 유.무에 따라 드럼 수위 변화에 대해 시뮬레이션을 하여 압력 보정이 드럼 수위에 미치는 영향을 고찰하고자 한다.

  • PDF

A Study on Relationship between Hypertension and Dietary Intake in a Rural Adult Population (일부 농촌 성인을 대상으로 한 고혈압과 식이섭취와의 관계에 관한 연구)

  • Go, Un-Yeong;Kim, Joung-Soon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.4 s.59
    • /
    • pp.729-740
    • /
    • 1997
  • To determine the relationship between hypertension and nutrient intake cross-sectional study were performed in a rural area. Adult resident over 30-year-old age were measured blood pressure and body mass index(BMI), and interviewed about food in-take for the previous 24 hours. 250 men and 297 women participated the survey. Significant correlation was showen in men between mean systolic blood pressure and protein density. Significant correlation with mean diastolic blood pressure was showen on protein density, protein energy(%), calcium density and energy-adjusted protein in men. We analysed risk factor for hypertension adjust the effect of age, BMI, sex and family history by multiple logistic regression. Protein density(odds ratio=3.18), fat density(odds ratio=1.94) and energy-adjusted protein(odds ratio=1.01) intake were positively associated with hypertension but sodium density(odds ratio=0.73) was showen to have inverse relationship.

  • PDF

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

Determination of Attenuation Collection Methods According to the Type of Radioactive Waste Drums (방사성폐기물드럼 종류별 감쇠보정방법의 결정)

  • Kwak, Sang-Soo;Choi, Byung-I1;Yoon, Suk-Jung;Lee, Ik-Whan;Kang, Duck-Won;Sung, Ki-Bang
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.309-317
    • /
    • 1997
  • The measured radioactivity of gamma-emitting radionuclides in each radioactive waste drum using the non-destructive waste assay method is underestimated than real radioactivity in radioactive waste drum because the gamma-rays are attenuated within the medium. Therefore, the measured radioactivity should be corrected for the attenuation of gamma-rays. For the correction of the attenuation of gamma-rays, the attenuation correction method should be applied differently by considering the distribution and density of medium in radioactive wastes drum generated from nuclear power plants. In this study, the model drums were fabricated for simulating five types of radioactive waste drums generated from nuclear power plant and the optimum methods of the attenuation correction were experimentally determined to analyze the activity of radionuclides in the waste drum accurately using the segmented gamma scanning system. With the determination of the attenuation correction methods from the experimental results the transmission method and the average density method for the miscellaneous waste drum, the transmission method and the differential peak absorption method for the shielded miscellaneous waste drum were used to measure the density of medium in waste drums. Also, the average density method and the differential peak absorption method for the spent resin drum, the paraffin solidified drum, and the spent filter drum were used.

  • PDF

A Study on Estimation of Degree of Compaction by Correction for Coarse Particle Ratio of Fill Material (성토재료의 조립자율 보정에 의한 다짐도 평가에 관한 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Seo, Min-Su;Kim, Changyoung;Kang, Sang-Kyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • The degree of compaction of embankments is generally measured using the sand replacement method or a soil density gauge. However, these methods include coarse particles, which are relatively large. The degree of compaction is overestimated if the in-situ soil density is simply compared with the density obtained from a Proctor compaction test (KS F 2312, 2001), because the density of coarse particles is higher than that of soil. However, there is no recommended correction for the coarse particle ratio in Korea, thus intentionally increasing the degree of compaction for structures to which large loads are applied or for which compaction is critical. Here, a correction considering the Korean Proctor compaction test and the difference between the maximum allowable particle sizes was recommended after corrections for coarse particle ratios in other countries were collected and analyzed. The degree of compaction was re-estimated by applying the recommended correction to the results of both Proctor compaction and sand replacement tests. The degree of compaction without the correction of coarse particle ratio was overestimated, because the re-estimated degree of compaction decreased as the coarse particle ratio increased. The relatively accurate results obtained from the field application of the correction will offer long-term cost savings due to reduced maintenance fees during operation.

Marinelli Beaker Measurement and Self Absorption Correction and Application for Various Environmental Samples in Monte Carlo Simulation (몬테카를로 시뮬레이션에서의 다양한 환경 샘플에 대한 Marinelli 비이커 측정 및 자기 흡수 보정과 적용)

  • Jang, Eun-Sung;Gim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.605-611
    • /
    • 2017
  • The structure of the actual detector was computed using the code of the PENELOPE. Using the standard mixed sources (450, 1,000 ml), compare the effectiveness of each energy according to various densities and height of the PENELOPE computer simulation, and calculate the effectiveness of the various environmental specimens and apply them to various environmental specimens to determine the lower limit. The values obtained by the obtained value were obtained by applying the obtained efficiency to the actual environmental specimens and obtaining the lower limit values. The density correction factor is 1.155 g of the density correction factor of $0.4g/cm^3$ (59.54keV), 1.153 (661 keV), $1.06g/cm^3$ 1.064 (1,836.04keV), 1.03, and 1.033. It was confirmed that the radioactivity concentration of environmental samples decreased as the amount of specimen was measured increases, and the MDA value decreased as time measured increases.

Examination of Correction Factor for Manganese Nodule Abundance Using the Free Fall Grab and Box Corer (자유낙하식 시료채취기(Free Fall Grab)와 상자형 퇴적물시료 채취기(Box Corer)를 이용한 망간단괴 부존밀도 보정상수에 관한 고찰)

  • Lee, Gun-Chang;Kim, Jong-Uk;Chi, Sang-Bum;Ko, Young-Tak;Ham, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • Manganese nodule abundance estimated based on operation of a Free Fall Grab(FFG) needs to be corrected to make up for its incomplete recovery of nodule, because FFGs can not recover all the nodules distributed on seabed. The correction factor for nodule abundance was proposed as 1.29 and 1.13 in 1994 and 2002, respectively, mainly based on the analyses of seabed images. In this study we collected manganese nodules using both FFG and Box Corer(BC) at same stations to examine the accuracy of the previous correction factors. It was found that the nodule recovery of the BC was 1.4 times greater than that of the FFG at the same sampling station, suggesting the necessity of re-evaluation of the previously proposed correction factor for FFG. More extensive sampling and improvement of image analysis method are required to improve the precision of nodule abundance correction factor for FFG.

Water-Fat Imaging with Automatic Field Inhomogeneity Correction Using Joint Phase Magnitude Density Function at Low Field MRI (저자장 자기공명영상에서 위상-크기 결합 밀도 함수를 이용한 자동 불균일 자장 보정 물-지방 영상 기법)

  • Kim, Pan-Ki;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Purpose : A new inhomogeneity correction method based on two-point Dixon sequence is proposed to obtain water and fat images at 0.35T, low field magnetic resonance imaging (MRI) system. Materials and Methods : Joint phase-magnitude density function (JPMF) is obtained from the in-phase and out-of-phase images by the two-point Dixon method. The range of the water signal is adjusted from the JPMF, and 3D inhomogeneity map is obtained from the phase of corresponding water volume. The 3D inhomogeneity map is used to correct the inhomogeneity field iteratively. Results : The proposed water-fat imaging method was successfully applied to various organs. The proposed 3D inhomogeneity correction algorithm provides good performances in overall multi-slice images. Conclusion : The proposed water-fat separation method using JPMF is robust to field inhomogeneity. Three dimensional inhomogeneity map and the iterative inhomogeneity correction algorithm improve water and fat imaging substantially.