• Title/Summary/Keyword: 밀도계 해법

Search Result 6, Processing Time 0.022 seconds

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW (캐비테이션 유동해석을 위한 기-액 2상 국소균질 모델)

  • Shin, Byeong-Rog
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.53-62
    • /
    • 2007
  • A high resolution numerical method aimed at solving cavitating flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at isothermal condition and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

Application of Discrete-Ordinate Method to the Time Dependent Radiative Heat Transfer Calculations (방향차분법을 적용한 시간종속 복사 열전달 계산)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.250-255
    • /
    • 2006
  • In this study, the discrete ordinates method which has been widely used in the solution of neutron transport equation is applied to the solution of the time dependent radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new multi-step linearization method is developed to avoid the nonlinearity in the material temperature equation. This new solution method is applied to the well known Marshak wave problem, and the numerical result is compared with that of the conventional Monte-Carlo method.

Evaluation of Structural and Functional Changes of Ecological Networks by Land Use Change in a Wetlandscape (토지이용변화에 따른 거시적 습지경관에서의 생태네트워크의 구조 및 기능적 변화 평가)

  • Kim, Bin;Park, Jeryang
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.189-198
    • /
    • 2020
  • Wetlands, which provide various ecological services, have been regarded as an important nature-based solution for, for example, sustainable water quality improvement and buffering of impacts from climate change. Although the importance of conserving wetlands to reduce the impacts of various perturbations (e.g., changes of land use, climate, and hydrology) has been acknowledged, the possibility of applying these efforts as a nature-based solution in a macro-scale (e.g., landscape) has been insufficient. In this study, we examine the possibility of ecological network analysis that provides an engineering solution as a nature-based solution. Specifically, we analyzed how land use change affects the structural and functional characteristics (connectivity, network efficiency, and clustering coefficient) of the ecological networks by using the ecological networks generated by multiple dispersal models of the hypothetical inhabiting species in wetlandscape. Changes in ecological network characteristics were analyzed through simultaneously removing wetlands, with two initial conditions for surface area, in the zones where land use change occurs. We set a total number of four zones of land use change with different wetland densities. All analyses showed that mean degree and network efficiency were significantly reduced when wetlands in the zones with high wetland density were removed, and this phenomenon was intensified especially when zones contained hubs (nodes with high degree). On the other hand, we observed the clustering coefficient to increase. We suggest our approach for assessing the impacts of land use change on ecological networks, and with additional analysis on betweenness centrality, we expect it can provide a nature-based engineering solution for creating alternative wetlands.

Iterative Cumulant Moment Method for solution of Boltzmann Equation and its Application to Shock Wave Structure (반복적 Cumulant 모멘트 방법에 의한 Boltzmann 방정식의 해법과 충격파구조에 관한 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • For non-linear solution of the Boltzmann equation, the cumulant moment method has been studied. To apply the method to the normal shock wave problem, we restricted ourselves to the monatomic Maxwell molecular gases. The method is based on the iterative approach developed by Maxwell-Ikenberry-Truesdell (MIT). The original MIT approach employs the equilibrium distribution function for the initial values in beginning the iteration. In the present work, we use the Mott-Smith bimodal distribution function to calculate the initial values and follow the MIT iteration procedure. Calculations have been carried out up to the second iteration for the profiles of density, temperature, stress, heat flux, and shock thickness of strong shocks, including the weak shock thickness of Mach range less than 1.4. The first iteration gives a simple analytic expression for the shock profile, and the weak shock thickness limiting law which is in exact accord with the Navier-Stokes theory. The second iteration shows that the calculated strong shock profiles are consistent with the Monte Carlo values quantitatively.

  • PDF

Transient Elastodynamic Mode III Crack Growth in Functionally Graded Materials (함수구배재료에서 천이탄성동적모드 III 균열전파)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.851-858
    • /
    • 2010
  • A generalized elastic solution for a transient mode III crack propagating along the gradient in functionally graded materials (FGMs) is obtained through an asymptotic analysis. The shear modulus and density of the FGMs are assumed to vary exponentially along the gradient. The stress and displacement fields near the crack tip are obtained in terms of powers of radial coordinates, and the coefficients depend on the time rates of the change of the crack tip speed and stress intensity factors. The influence of nonhomogeneity and transients on the higher order terms of the stress and displacement fields is discussed.

Characteristics on the Motion of Purse Seine(II) -An Analysis on the Sinking Characteristics of Model Purse Seine by Different Netting Material- (건착망의 운동특성(II) -그물감이 다른 건착망의 침강특성 해석-)

  • Kim, Suk-Jong;Park, Jeong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.372-378
    • /
    • 1995
  • This study describes an analysis on the sinking characteristics in purse seine. The experiment was carried out using three simplified model seines in a flume tank under still water condition. The densities($\rho$) of netting materials were 0.91g/$cm^3$ for PP seine, 1.14g/$cm^3$ for PA seine and 1.38g/$cm^3$ for PES seine. Differential equations were derived from the conservation of momenta of the model seines and used to determine the sinking speeds of the depths of leadline and the other portions of seines. An analysis carried out by simultaneous differential equations for numerical method by subroutine Runge-Kutta-Gill. The results obtained were as follows: 1) Sinking speed of net margin was fastest for PP seine, followed by PA and PES seines. 2) The coefficient of resistance for netting of seine was estimated to be $K_D=0.061({\frac{\rho}{{\rho}_w}})^4$. 3) The coefficient of resistance for netting bundle of seine was estimated to be $C_R=0.91({\frac{\rho}{{\rho}_w}}$. 4) In all seines, the calculated depths of leadline closely agreed with the measured ones(meas.=0.99cal.).

  • PDF