• Title/Summary/Keyword: 미소 유량 센서

Search Result 6, Processing Time 0.023 seconds

Experimental Study on a Micro Flow Sensor (미소 유량 센서에 관한 실험적 연구)

  • Kim, Tae-Hoon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1783-1788
    • /
    • 2004
  • In the present paper, a micro flow sensor, which can be used at bio-delivery systems and micro heat pumps, is developed. For this, the micro flow sensor is integrated on a quartz wafer ($SiO_2$) and is manufactured by simple and convenient microfabrication processes. The micro flow sensor aims for measuring mass flow rates in the low range of about $0{\sim}20$ SCCM. The micro flow sensor is composed of temperature sensors, a heater, and a flow microchannel. The temperature sensors and the heater are manufactured by the sputtering processes in this study. In the microfabrication processes, stainless steel masks with different patterns are used to deposit alumel and chromel for temperature sensors and nichrome for the heater on the quartz wafer. The microchannel is made of Polydimethylsiloxane(PDMS) easily. A deposited quartz wafer is bonded to the PDMS microchannel by using the air plasma. Finally, we confirmed the good operation of the present micro flow sensor by measuring flow rate.

  • PDF

Fabrication of a Micro Electromagnetic Flow Sensor for Micro Flow Rate Measurement (미소 유량 측정을 위한 마이크로 전자 유량 센서의 제작)

  • Yoon, Hyeun-Joong;Kim, Soon-Young;Yang, Sang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.334-340
    • /
    • 2000
  • This paper presents the fabrication of a micro electromagnetic flow sensor for the liquid flow rate measurement. The micro electromagnetic flow sensor has some advantages such as a simple structure, no heat generation, a rapid response and no pressure loss. The principle of the micro electromagnetic flow sensor is based on Faraday's law. If conductive fluid passes through a magnetic field, the electromotive force is generated and detected by two electrodes on the wall of the flow channel. The flow sensor consists of two permanent magnets and a silicon flow channel with two electrodes. The dimension of the flow sensor is $9\;mm\;{\times}\;9\;mm\;{\times}\;1\;mm$. The micro flow channel is mainly fabricated by anisotropic etching of two silicon wafers, and the detection electrodes are fabricated by metal evaporation process. The characteristic of the fabricated flow sensor is obtained experimentally. When the flow rates of water with the conductance of $100-200\;{\mu}S/cm$ are 9.1 ml/min and 62 ml/min, the generated electromotive forces are $261\;{\mu}V$ and 7.3 mV, respectively.

  • PDF

Fabrication and Characteristics of Piezoresistive Flow Sensor with Microbeam Structures (미소 빔 구조를 가진 압저항형 유체센서의 제작 및 특성)

  • Park, Chang-Hyun;Kang, Sung-Gyu;Yu, In-Sik;Sim, Jun-Hwan;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.400-406
    • /
    • 1999
  • Piezoresistive flow sensors with four different types of microbeam structures were fabricated using (100), n/$n^+$/n three-layer silicon wafer and their characteristics were investigated. Piezoresistors were formed through boron diffusion and its values were about $1\;k{\Omega}$. Three-dimensional silicon microbeams were constructed by porous silicon micromachining and curled microbeams were fabricated by the difference in the thermal expansion coefficient between silicon and metal. The output response of the fabricated sensor was evaluated through half- bridge. The output voltage increased with increasing length of microbeam at the same flow velocity, while the detectable measurement range extended with decreasing length of microbeam. The output voltage of the fabricated sensors were increased with quotient of 3.2 of the flow rate since the stress of the beam versus the gas flow showed non-linear characteristics.

  • PDF

Temperature Characteristics of Solid State Flow Velocity/Mass Sensor (반도체형 유속/유량센서의 온도특성)

  • Choi, Jai-Gun;Kim, Hyung-Pyo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • A constant solid state flow velocity/mass sensor has been fabricated and its characteristics were measured according to flow velocity and fluid temperature. Parameters of the sensor circuit were obtained by simulation using finite difference method. Sensitivity was 10mW/(cm/sec) in the range of flow velocity 0-45cm/sec and response time was within two seconds. For the experiment of fluid temperature variation, the sensor output was compensated at the rate of temperature variation $0.1^{\circ}C/min$, however, with the rate of $0.2^{\circ}C/min$ it took two minutes to be compensated. Since it is not quite often to have such a rate of temperature variation of $0.2^{\circ}C/min$ or more, the developed sensor output can be used for most applications to detect small amount of flow-rate.

  • PDF

Fabrication and characteristics of micro-machined thermoelectric flow sensor (실리콘 미세 가공을 이용한 열전형 미소유량센서 제작 및 특성)

  • Lee, Young-Hwa;Roh, Sung-Cheoul;Na, Pil-Sun;Kim, Kook-Jin;Lee, Kwang-Chul;Choi, Yong-Moon;Park, Se-Il;Ihm, Young-Eon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • A thermoelectric flow sensor for small quantity of gas flow rate was fabricated using silicon wafer semiconductor process and bulk micromachining technology. Evanohm R alloy heater and chromel-constantan thermocouples were used as a generation heat unit and sensing parts, respectively. The heater and thermocouples are thermally isolated on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ laminated membrane. The characteristics of this sensor were observed in the flow rate range from 0.2 slm to 1.0 slm and the heater power from 0.72 mW to 5.63 mW. The results showed that the sensitivities $(({\partial}({\Delta}V)/{\partial}(\dot{q}));{\;}{\Delta}V$ : voltage difference, $\dot{q}$ : flow rate) were increased in accordance with heater power rise and decreasing of flow rate.

Report on Extended Leak-Off Test Conducted During Drilling Large Diameter Borehole (국내 대구경 시추공 굴진 중 Extended Leak-Off Test 수행 사례 보고)

  • Jo, Yeonguk;Song, Yoonho;Park, Sehyeok;Kim, Myung Sun;Park, In-Hwa;Lee, Changhyun
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.285-297
    • /
    • 2022
  • We report results of Extended Leak-Off Test (XLOT) conducted in a large diameter borehole, which is drilled for installation of deep borehole geophysical monitoring system to monitor micro-earthquakes and fault behavior of major fault zones in the southeastern Korean Peninsula. The borehole was planned to secure a final diameter of 200 mm (or more) at a depth of ~1 km, with 12" diameter wellbore to intermediate depths, and 7-7/8" (~200 mm) to the bottom hole depth. We drilled first the 12" borehole to approximately 504 m deep and installed American Petroleum Institute standard 8-5/8" casing, then annulus between the casing and bedrock was fully cemented. XLOT was carried out for several purposes such as confirming casing and cementing integrity, measuring rock stress states. To that end, we drilled additional 4 m long open hole interval to directly inject water and pressurize into the rock mass using the upper API casings. During the XLOT, flow rates and interval pressures were recorded in real time. Based on the logs we tried to analyze hydraulic conductivity of the test interval.