• Title/Summary/Keyword: 미소신호 안정도

Search Result 43, Processing Time 0.036 seconds

Contingency Analysis for Small Signal Stability of Power Systems (전력계통의 미소신호안정도 상정사고 해석)

  • 심관식;김용구;문채주
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.127-137
    • /
    • 2003
  • Contingency analysis is one of the most important tasks encountered by planning and operation of lafe scale power systems. This paper describes a new contingency analysis methods for small signal security assessment based on the eigen-sensitivity/perturbation of the electromechanical oscillation modes. The eigen-sensitivity/perturbation with respect to line suceptances and controller parameters can he used to find possible sources of the system instability, and to select contingency for small signal stability. Also, the contingency selection to identify critical generators for MW changes can be obtained by computing the relative movement of the system oscillation modes. The proposed algorithm has been successfully tested on the KEPCO systems which is comprised of 791-bus, 1575-branch and program PSS/E

Case study of microseismic techniques for stability analysis of pillars in a limestone mine (석회석 광산 내 광주의 안정성 분석을 위한 미소진동 계측기술의 현장적용)

  • Kim, Chang Oh;Um, Woo-Yong;Chung, So-Keul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This study deals with the case that was the field application of the microseismic monitoring techniques for the stability monitoring in a domestic mine. The usefulness and limitations of the microseismic techniques were examined through analyzing the microseismic monitored data. The target limestone mine adopted a hybrid room-and-pillar mining method to improve the extraction ratio. The accelerometers were installed in each vertical pillar within the test bed which has the horizontal cross-section $50m{\times}50m$. The measured signals were divided into 4 types; blasting induced signal, drilling induced signal, damage induced signal, and electric noise. The stability analysis was performed based on the measured damage induced signals. After the blasting in the mining section close to the test bed, the damage of the pillar was increased and rockfall near the test bed could be estimated from monitored microseismic data. It was possible to assess the pillar stability from the changes of daily monitored data and the proposed safety criteria from the accumulated monitored data. However, there was a difficulty to determine the 3D microseismic source positions due to the 2D local sensor arrays. Also, it was needed to use real-time monitoring methods in domestic mines. By complementing the problems encountered in the mine application and comparing microseismic monitored data with mining operations, the microseismic monitoring technique can be used as a better safety method.

Analysis of Power System Stability by Deployment of Renewable Energy Resources (재생에너지원 보급에 따른 전력계통 안정도 분석)

  • Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.633-642
    • /
    • 2021
  • Growing demand for electricity, when combined with the need to limit carbon emissions, drives a huge increase in renewable energy industry. In the electric power system, electricity supply always needs to be balanced with electricity demand and network losses to maintain safe, dependable, and stable system operation. There are three broad challenges when it comes to a power system with a high penetration of renewable energy: transient stability, small signal stability, and frequency stability. Transient stability analyze the system response to disturbances such as the loss of generation, line-switching operations, faults, and sudden load changes in the first several seconds following the disturbance. Small signal stability refers to the system's ability to maintain synchronization between generators and steady voltages when it is subjected to small perturbations such as incremental changes in system load. Frequency stability refers to the ability of a power system to maintain steady frequency following a severe system upset resulting in significant imbalance between generation and load. In this paper, we discusses these stability using system simulation by renewable energy deployment plan, and also analyses the influence of the renewable energy sources to the grid stability.

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

Study of a unified framework for small signal stability of power systems (계통의 종합적 미소신호 안정도 해석에 관한 연구)

  • Kim, Sang-Ahm;Lee, Byoung-Jun;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.201-203
    • /
    • 1998
  • This paper presents the framework for analysis of small-signal stabili1ty. In this framework the equilibrium points of system DAE model are traced using continuation method and instability points are determined on the solution path. Especially Implicit shift QR-modified ARnoldi method is utilized to calculated the rightmost eigenvalues. ISPS measure is utilized to determine critical parameters.

  • PDF

Computer Analysis Program of Small-Signal Stability of Power System for Tuning PSS′s parameters (PSS 정수 튜닝을 위한 전력시스템 미소신호 안정도 해석 프로그램)

  • Kim, Dong-Joon;Moon, Young-Hwan;Hur, Jin;Shin, Jeong-Hoon;Kim, Tae-Kyun;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.241-249
    • /
    • 2003
  • This paper describes a novel approach for performing eigenvalue analysis and frequency domain analysis of multi-machine power system. The salient feature of this approach is a direct approach for constructing the state matrix equations of linearized power systems about its operating point using modular technique. These state matrix equations are then used to obtain eigenvalues and mode shapes of the system, and frequency response, or Bode, plots of selected transfer functions. The proposed program provides a flexible tool for systematic analyses of tuning PSS's parameters. The paper also presents its application to the analyses of a single-machine infinite bus system and two-area system with 4 machines.

Analysis of Oscillation Modes in Discrete Power Systems Including GTO Controlled STATCOM by the RCF Method (GTO 제어 STATCOM을 포함하는 이산 전력시스템의 RCF 해석법에 의한 진동모드 해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.829-833
    • /
    • 2007
  • In this paper, the RCF method is applied to analyze small signal stability of power systems including GTO controlled parallel FACTS equipments such as STATCOM. To apply the RCF method in power system small signal stability problems, state transition equations of generator, controllers and STATCOM are presented. In eigenvalue analysis of power systems, STATCOM is modelled as the equivalents voltage source model and the PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodically operated switching devices such as STATCOM.

Small signal stability analysis of oscillations caused by switching operations of SVC (SVC의 스위칭 동작에 의해 발생되는 진동현상의 미소신호 안정도 해석)

  • Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.495-497
    • /
    • 2005
  • A new small signal stability analysis method for eigenvalue analysis is presented. This method is called RCF method and based on the computation of the state transition equations and state transition matrix over a specified time interval that corresponds to one or some cycle operations of the system. This method is applicable to any system with or without switching elements. As an applicable example of RCF method in power system, the one machine infinite bus system connected switching SVC at generator terminal is investigated and the results proved that variations of oscillation modes after switching operations can be calculated exactly.

  • PDF