• Title/Summary/Keyword: 미소비커스경도

Search Result 9, Processing Time 0.026 seconds

Microhardness measurement for a few micron thick TiN thin films (수미크론 두께를 갖는 TiN코팅층의 미소경도 측정법)

  • Jo, Yeong-Rae;Fromm, E.
    • Korean Journal of Materials Research
    • /
    • v.5 no.3
    • /
    • pp.310-315
    • /
    • 1995
  • 기계적으로 연마한 고속도강과 구리 두 종류의 서로 다른 기판상에 dc 마그네트론 스파터법으로 TiN 박막을 성막시켜 코팅층의 비커스 미소경도를 측정하였다. 압입체의 침투깊이와 시험하중과의 관계를 log-log 좌표상에 도시함으로써 기판의 영햐응ㄹ 받지 않고 코팅층만의 경도를 측정할수 있는 최대하중인 임계하중(critical load)을 구할수 있었다. 임계하중을 가했을 때 압입체의 침투깊이와 코팅층 두께간의 비율은 코팅층의 두께에 무관하였고 기판의 경도에 크게 의존하였다.

  • PDF

Weibull Statistical Analysis of Micro-Vickers Hardness using Monte-Carlo Simulation (몬테카를로 시뮬레이션에 의한 미소 비커스 경도의 Weibull 통계 해석)

  • Kim, Seon-Jin;Kong, Yu-Sik;Lee, Sang-Yeal
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • In the present study, the Weibull statistical analysis using the Monte-Carlo simulation has been performed to investigate the micro-Vickers hardness measurement reliability considering the variability. Experimental indentation test were performed with a micro-Vickers hardness tester for as-received and quenching and tempering specimens in SCM440 steels. The distribution of micro-Vickers hardness is found to be 2-parameter Weibull distribution function. The mean values and coefficients of variation (COV) for both data set are compared with results based on Weibull statistical analysis. Finally, Monte-Carlo simulation was performed in order to evaluate the effect of sample size on the micro-Vickers hardness measurement reliability. For the parent distribution with shape parameter 30.0 and scale parameter 200.0 (COV=0.040), the number of sample data required to obtain the true Weibull parameters was founded by 20. For the parent distribution with shape parameter 10.0 and scale parameter 200.0 (COV=0.1240), the number of sample data required to obtain the true Weibull parameters was founded by 30.

The Signal Characteristics from Crack of Brittle Materials by Vickers Load (비커스 압입 하중에 의한 취성재료의 균열 신호특성)

  • Nam, Ki-Woo;Kim, Hyun-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.125-131
    • /
    • 2002
  • we analyzed acoustic emission signals obtained from three kinds of brittle materials under compression load by Vickers hardness tester. The results obtained can be summarized as follows; The signal in each material could be divided into three signal based on the properties of load. All specimens were not detected acoustic emission signals in stage II which was load constant region., and were detected in stage I and stage III. Glass was detected high amplitude signals in stage III. $Al_2O_3\;and\;Al_2O_3/Sic$ were detected high amplitude signals in stage I.

Effects of Applied Load on the Vickers Microhardness in Pure Cu Specimen (시험하중의 변화가 순수한 Cu시편의 비커스 미소경도에 미치는 영향)

  • Jo, Yeong-Rae;Lee, Geun-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.434-438
    • /
    • 1999
  • Vickers microhardness for polished Cu specimen has been measured by conventional and new methods. The conventional microhardness was measured by observing the diagonal of indentation after the load was removed. Whereas, the new method for microhardness was obtained by measuring the penetration depth of indenter into the specimen under the load. As the applied load was increased, the microhardness obtained by new method was increased. When the applied load was in the range of 5mN to 80mN, the rate of elastic to total depth of indenter was about 6% and the calculated depth of rounded indenter was 0.07$\mu\textrm{m}$. The difference in microhardness measured by two different methods such as conventional and new methods can be explained in terms of the elastic deformation of specimen, the shape of practical indenter and pile up of material.

  • PDF

Evaluation on Degradation of Cr-Mo-V Steel by Micro-Vickers Hardness Measurement (미소 비커스경도에 의한 Cr-Mo-V강의 경년열화 평가)

  • Kim, Jung-Ki;Nahm, Seung Hoon;Kim, Amkee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • Since Cr-Mo-V steel has excellent fracture and creep properties at elevated temperature, they are extensively used as steam turbine components such as the turbine rotor. However, the turbine rotor steel used to suffer material degradation during long term service. Therefore, the assessment of the safety and residual life of the turbine rotor is periodically required during service. One of the most convenient techniques for that is the hardness method mainly due to its simplicity and nondestructive characteristics. In this research, six specimens with different aging times of turbine rotor steel were artificially prepared by an isothermal heat treatment at $630^{\circ}C$. The micro Vickers hardnesses of specimens were measured at room temperature. The relationships between the fracture properties and the hardness ratio were investigated. And also an indirect method to evaluate the residual life of degraded turbine rotor was proposed based on the micro Vickers hardness measurement.

  • PDF

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

Creep Damage and Hardness Properties for 9Cr Steel by SP-Creep Test Technique (SP-Creep 시험기법에 의한 9Cr강의 크리프 손상과 경도 특성)

  • Baek, Seung-Se;Lyu, Dae-Young;Kim, Jeong-Ki;Kwon, Il-Hyun;Chung, Se-Hee;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.105-110
    • /
    • 2001
  • It has recently been raised main issue how solve the problem of insufficient energy. One of the solution is to increase the thermal efficiency of power generation system. For the purpose of high efficiency, it is necessary to increase the steam temperature and pressure. So, the use of modified $9{\sim}12%Cr$ steel having superior creep rupture strength and oxidation resistance is required to endure such severe environment. The evaluation of creep properties of those heat resistance material is very important to secure the reliability of high temperature and pressure structural components. Since creep properties are determined by microstructural change such as carbide precipitation and coarsening, It is certain that there are some relationship between creep properties and hardness affected by microstructure. In this study, SP-Creep ruptured test for newly developed 9Cr steel being used as boiler valve material was performed, and creep properties of the material were evaluated. Also, hardness test were performed and hardness results were related to the creep properties such as LMP and creep strength to verify the availability of SP-Creep test as creep test method.

  • PDF

Evaluation of the corrosion property on the welded zone of seawater pipe by A.C shielded metal arc welding (교류 피복아크 용접에 의한 해수 배관 용접부위의 부식 특성 평가)

  • Jeong, Jae-Hyun;Kim, Yun-Hae;Moon, Kyung-Man;Lee, Myeong-Hoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.877-885
    • /
    • 2013
  • A seawater pipe of the engine room in the ships is being surrounded with severely corrosive environments caused by fast flowing of the seawater, containing aggressive chloride ion and high conductivity etc.. Therefore, the leakage of the seawater from its pipe have been often occurred due to its local corrosion by aggressive chloride ions. Subsequently, its leakage area is usually welded by AC shielded metal arc welding with various electrodes. In this study, when the sea water pipe is welded with several types of electrodes such as E4301, E4311, E4313 and E4316, a difference of the corrosion resistance on the welding metal zones was investigated using an electrochemical method, observing microstructure, measuring polarization behaviors and hardness. The weld metal zone welded with E4313 electrode exhibited the lowest value of hardness compared to other weld metal zones. In addition, its zone indicated also the best corrosion resistance than those of other weld metal zones. Furthermore, all of the weld metal zones revealed a relatively better corrosion resistance than those of the base metal zones. and also showed higher hardness than the base metal zones.

Mechanical Properties of Friction Welded SM 45C-SF 45 Joints for Automobile Reverse Idle Gear Shaft Applications (자동차 후진기어용 축재(SM 45C-SF 45)의 이종마찰용접 특성)

  • Kong, Yu-Sik;Yun, Seong-Pil;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • Friction welding is a common practice to join axially symmetrical parts for automobile industry applications. The shaft for automobile reverse idle gear is generally produced by forging steel, SF 45. This method is not so good because of high cost of material and production. In this study, in order to investigate the possibility of application of SM 45C to SF 45 dissimilar friction welding, the dissimilar friction welded joints were performed using 20 mm diameter solid bar in forging steel(SF 45) to carbon steel(SM 45C). The optimal friction welding parameters were selected to ensure reliable quality welds on the basis of visual examination, tensile test, micro-Virkers hardness surveys of the bond of area and optical microstructure investigations for welded joint parts. Finally, post weld heat treatment(PWHT) of the high-frequency induction hardening was performed for the friction welded specimens under the optimal welding conditions. And then, the mechanical properties were compared for as-welded and PWHT in SM 45C to SF 45.