• Title/Summary/Keyword: 미소교란법

Search Result 11, Processing Time 0.023 seconds

Transonic Aeroelastic Analysis of a Airfoil with Friction Damping (마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1075-1080
    • /
    • 2010
  • For the aeroelastic analysis of a wing with friction damping, coupled time integration method was used to obtain time responses in the subsonic and transonic regions. To take into account aerodynamic nonlinearity induced by shock wave on the lifting surface, transonic small disturbance equation with in-phase periodic boundary condition was used for unsteady aerodynamic calculation. For 2-DOF airfoil system with displace-dependent friction dampers, the effects of normal load slope and Mach number on flutter boundary were investigated.

A Mathematical Model for Nonlinear Waves due to Moving Disturbances in a Basin of Variable Depth (부등 수심지역의 이동 교란에 의한 비선형파의 수학적 모형)

  • Efim N. Pelinovsky;Hang Soon Choi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-197
    • /
    • 1993
  • Mathematical models of nonlinear waves due to disturbances moving with the near critical velocity in a basin of variable depth are discussed. A two-dimensional model for waves of arbitrary amplitude is developed. In the case of small perturbation it is shown that nonlinear ray method can be applied to obtain the generalized forced Korteweg-de Vries equation.

  • PDF

Numerical Study on a Reaction Wheel and Wheel-Disturbance Modeling (반작용휠 및 휠 교란 모델링에 관한 해석적 연구)

  • Kim, Dae-Kwan;Oh, Shi-Hwan;Yong, Ki-Lyuk;Yang, Koon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.702-708
    • /
    • 2010
  • Reaction wheel assemblies(RWA) are expected to be one of the largest high frequency disturbance sources to the optical payload of satellites. To ensure the tight pointing-stability budget and high image quality of satellites, a vibration isolation device should be applied to the main disturbances. For developing the isolating system, the disturbances need to be identified and modeled accurately. In the present study, a modeling technique of RWA and its disturbance was described. The micro-vibration disturbances were generated numerically by using an analytical wheel and disturbance model. The parameter estimation scheme of the model was suggested, and the RWA and disturbance modeling technique was verified through the numerical example analysis. The analytical results show that the wheel and disturbance model can be accurately established by using the modeling technique proposed in the present study. The wheel and disturbance model is expected to be useful for development of the RWA isolator system.

A Study of the Gasdynamics of Perforated Wall (다공벽의 기체역학에 관한 연구)

  • Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.538-543
    • /
    • 2003
  • Perforated wall has long been employed to control a variety of flow phenomena. It has been, in general, characterized by a porosity of the perforated wall. However, this porosity value does not take account of the number and detailed shape of porous holes, but is defined by only the ratio of the perforated area to total wall surface area. In order to quantify the porous wall effects on the flow control performance, an effective porosity should be known with the detailed flow properties inside the porous holes. In the present study, a theoretical analysis using a small disturbance method is performed to investigate detailed flow information through porous hole and a computational work is also carried out using the two-dimensional, compressible Navier-Stokes equations. Both the results are compared with existing experimental data. The gasdynamical porosity is defined to elucidate the effect of perforated wall.

  • PDF

Analysis of Normal Shock-Wave Oscillation in a Supersonic Diffuser (초음속 디퓨져에서 발생하는 수직충격파 진동의 이론해석)

  • 김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.36-46
    • /
    • 1998
  • Shock-wave in a supersonic diffuser flow cannot be stable even in the given pressure ratio which remains constant over time, and oscillates around a certain time-mean position. In the present study, oscillation of a normal shock-wave in a supersonic diffuser was analyzed by a small perturbation method. Upstream pressure perturbation was applied to a supersonic diffuser flow with a normal shock-wave. Stability of shock-wave was investigated by considering the diffuser pressure recovery and frequency of the pressure perturbation. The results obtained show that a stable oscillation of weak normal shock-wave is obtainable for the flow with the Mach number over 1.74. The ratio of sound pressures downstream to upstream of the shock wave increases with increase of the Mach number. The present results agree well with other analytical and experimental results.

  • PDF

Interaction of Local Roughness and Turbulent Boundary Layer (국소거칠기와 난류 경계층과의 상호작용)

  • 문철진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.120-124
    • /
    • 1991
  • An interaction of turbulent boundary layer and local roughness effects was evaluated to investigate the shear frictional coefficient in diffuser. Clauser roughness function was applied to Karman's integral equation for governing equation. The roughness of overall and local diffuser surfaces were calculated using Cole's wall and wake law and Clauser's roughness function for turbulent boundary layer characteristics. The calculating results were compared with the experimental results of other paper. It shows some significant improyements for shear frictional coefficient. Computer code was then used to confirm the behavior of local frictional coefficient along with diffuser roughness surface for some reduction of shear flow stress.

  • PDF

An Experimental Study on the Determination of Damage Thresholds in Rock at Different Stress Levels (응력수준에 따른 암석의 손상기준 결정에 관한 실험적 연구)

  • Chang Soo-Ho;Lee Chung-In
    • Explosives and Blasting
    • /
    • v.23 no.4
    • /
    • pp.31-44
    • /
    • 2005
  • In highly stressed conditions, the excavation damage zone induced by stress redistribution and disturbance must be evaluated after tunnel excavation. Therefore, the investigation of stress-induced deformation and fracture in rock is indispensable. In this study, fracture and damage mechanisms of rock induced by the accumulation of microcracks were investigated by the moving point regression technique as well as acoustic emission measured during uniaxial compression tests. Especially, the modified procedures to determine damage thresholds more systematically were newly proposed, and successfully applied to rock. From experiments, crack initiation and track damage stress levels were estimated to be $33{\~}36\%$ and $84{\~}89\%$ of uniaxial compressive strength respectively, for both of Hwangdeung granite and Yeosan marble. However, the normalized crack closure stress level for Yeosan marble was much higher than for Hwangdeung granite. In addition, the largest proportion of total axial strain in Hwangdeung granite was attributable to elastic deformation and initial microcracking. However, the greatest part of axial deformation in Yeosan marble arose from initial crack closure and unstable cracking. Finally, it was seen that unstable cracking after the crack damage stress level played a key part in the lateral deformation in rocks under uniaxial compression.

Nonlinear Aeroelastic Analysis of a Wing with Control Surface Freeplay in Subsonic/Transonic Regions (조종면 유격이 있는 날개의 아음속 및 천음속에서의 비선형 공탄성 해석)

  • Kim, Kyung-Seok;Kim, Jong-Yun;Yoo, Jae-Han;Bae, Jae-Sung;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-301
    • /
    • 2007
  • The aeroelastic characteristics of a wing with control surface freeplay are investigated. The transonic small disturbance equation is used for unsteady aerodynamic forces in subsonic/transonic region. The fictitious mass method is introduced to apply a modal approach to nonlinear structural models. Nonlinear aeroelastic time responses are calculated by the coupled time integration method. Using these methods, an efficient aeroelastic analysis is achieved for aerodynamic and structural nonlinearities simultaneously. The effects of the aerodynamic nonlinearity, initial flap amplitude, and freeplay magnitude in aeroelastic characteristics are investigated in this study.

Study on Supersonic Jet Noise Reduction Using a Mesh Screen (메쉬 스크린을 이용한 초음속 제트소음 저감법에 관한 실험적 연구)

  • Kweon, Yong-Hun;Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • This paper describes experimental work to control supersonic jet noise using a mesh screen that is placed at the nozzle exit plane. The mesh screen is a wire-gauze screen that is made of long stainless wires with a very small diameter. The nozzle pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded jets. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The hole size is varied to investigate the noise control effectiveness of the mesh screen. A schlieren optical system is used to visualize the flow fields of supersonic jet with and without the mesh screen device. Acoustic measurement is performed to obtain the OASPL and noise spectra. The results obtained show that the present mesh screen device leads to a substantial suppression of jet screech tones. The hole size is an important factor in reducing the supersonic jet noise. For over-expanded jets, the noise control effectiveness of the mesh screen appears more significant, compared to correctly and under-expanded jets

  • PDF

Nonlinear Simulation of Flutter Flight Test with the Forced Harmonic Motion of Control Surfaces (조종면 강제 조화운동을 고려한 비선형 플러터 비행시험 모사)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kim, Young-Ik;Lee, Hee-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • In this study, transonic/supersonic nonlinear flutter analysis system of a complete aircraft including forced harmonic motion pf control surfaces has been effectively developed using the modified transonic small disturbance (TSD) equation. To consider the nonlinear effects, the coupled time marching method (CTM) combining computational structural dynamics (CFD) has been directly applied for aeroelastic computations. The grid system for a complex full aircraft configuration is effectively generated by the developed inhouse code. Intransonic and supersonic flight regimes, the characteristics of static and dynamic aeroelastic effect has been investigated for a complete aircraft model. Also, nonlinear flutter flight simulations for the forced harmonic motion of control surfaces are practically presented in detail.