• Title/Summary/Keyword: 미세 기포

Search Result 157, Processing Time 0.025 seconds

Utilization of Image Analysis Technique for Characterization of Micro-Bubbles Generated by Polymeric Membrane Module (고분자 중공사막 모듈을 이용한 미세기포 발생과 이미지 분석기법을 이용한 기포 특성 파악)

  • Kim, Jun-Young;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.447-452
    • /
    • 2011
  • In this study, the polymeric membrane module is used as a diffuser and an image analysis technique based on visual information is applied to get bubble characteristics. The bubble size generated passed through polymeric membrane module was smaller from 30 to 64% than that of air stone, and bubble volume over 70% was ranged from 0.2 to 0.82 mm. But over 80% the bubbles from air stone diffuser ranged from 0.77 to 1.08 mm. The air stone and polymeric membrane module used as diffuser for a flotation system. The floc size inside the flotation reactor using air stone diffuser was bigger than that of the polymeric membrane module, which means that the micro-bubbles generated from polymeric membrane module could provide better opportunities for collisions between colloidal particles than those from air stone diffuser. Therefore, there is a possibility to apply the polymeric membrane module as a diffuser to increase the removal efficiency in the flotation process. Also, the image analysis technique used in this study could be applied as a useful analytical tool for acquisition of an information about the bubble characteristic.

Modeling of Scattered Signal from Ship Wake and Experimental Verification (항적 산란신호의 모델링과 실험적 검증)

  • Ji, Yoon-Hee;Lee, Jae-Hoon;Kim, Jea-Soo;Kim, Jung-Hae;Kim, Woo-Shik;Choi, Sang-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • A moving surface vessel generates a ship wake which contains a cloud of micro-bubbles with radii ranging between $8{\sim}200{\mu}m$. Such micro-bubbles can be detected by active sonar system for more than ten minutes depending on the size and speed of the surface vessel. In this paper, a reverberation model for the ship wake is presented. The developed model consists of the acoustic scattering model due to the distribution of the micro-bubbles and the kinematic model for the moving active sonar. The acoustic scattering model is based on the volume integration, where the volume scattering strengths are obtained from the spatial distribution of micro-bubbles. Since the directivity and look-direction of active sonar are important factors for moving active sonar, the kinematic model utilizes the Euler transformation to obtain the relative motion between the global and local coordinates. In order to verify the developed model, a series of sea experiment was executed in September 2007 to obtain the spatial-temporal distribution of a bubble cloud, and analyzed to be compared with the simulation results.

Investigation of Microstructural Characteristics of Foamed Concrete with Different Densities (미세구조 분석방법을 활용한 서로 다른 밀도를 가진 기포콘크리트 특성 분석)

  • Chung, Sang-Yeop;Jo, Su-Sung;Oh, Seo-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • A set of foamed concrete specimens with different densities were prepared, and several microscopic techniques, such as scanning electron microscope (SEM) and X-ray micro-computed tomography (micro-CT) were used to characterize the foamed specimens. The pore and solid characteristics of the specimens at different ages were examined to investigate the effect of aging on the materials. The compressive strength and the thermal conductivity of the foamed specimens were also evaluated, and the relationship between the material characteristics and properties was integrated to identify the effect of density and aging on the material properties.

Study on Phosphorus Removal in the Secondary Effluent by Flotation Using Microbubble Liquid Film System (미세기포 액막화 부상법을 이용한 하수 2차 처리수의 인 제거에 관한 연구)

  • Lee, Shun-Hwa;Kang, Hyun-Woo;Lee, Se-Han;Kwon, Jin-Ha;Jung, Kye-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.42-48
    • /
    • 2012
  • In this study, experiment on phosphorus removal was performed by using microbubble liquid film flotation tank with microbubble module. After dissolving gas and liquid in dissolving tank, microbubble liquid film system created microbubbles in equal size under fixed low pressure. After being passed through $A_2O$ and m-$O_3$ process, secondary treatment wastewater was used as influent in phosphorus removal process. When the T-P concentration of influent was 2.89 mg/L, alum(8%, 30 mg/L) was injected into a microbubble flotation tank, the treatment resulted 94% of T-P removal rate. Remaining T-P concentration was less than 0.2 mg/L, which is in accord with the effluent quality standard. Seasonal variations in water temperature showed no differences in T-P removal property. When the inflow concentration of SS was 1.0 mg/L or more, it served as coagulation nuclei in the coagulation process. In that condition, average T-P removal rate was higher than 97%. When 50% of floated scum was returned, coagulator Al included in scum assisted the injected coagulator and maximized the coagulation efficiency of pollutant. In such treatment, the T-P concentration was measured as 0.18 mg/L and satisfied the outflow water quality standard, which is 0.2 mg/L or less.

Experimental Study on Geometry of a Microlayer During Single-Bubble Nucleate Boiling (단일기포 핵비등 시 미세액막층 구조에 대한 실험적 연구)

  • Jeong, Seunghyuck;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.519-526
    • /
    • 2015
  • To measure the physical parameters of the simple microlayer model for the prediction of the heat flux and heat transfer rate due to the evaporation of the microlayer during nucleate boiling, the microlayer geometry was experimentally examined. The parameters, including initial thickness, moving velocity and microlayer radius, were measured by total reflection and interferometry techniques using a laser. Single-bubble nucleate boiling experiments were conducted using saturated water on a horizontal surface under atmospheric pressure. The geometric characteristics of the microlayer underneath the bubbles periodically nucleating at a nucleation site at an average heat flux of $200kW/m^2$ were analyzed. The experimental results in the present study show that the maximum initial thickness of the microlayer and the horizontal moving velocity are $5.4{\mu}m$ and 0.12 m/s, respectively.

전기부상법을 이용한 토양세정 유출수 중 유수분리에 관한 연구

  • 소정현;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.99-102
    • /
    • 2002
  • 전기분해에 의한 부상현상을 이용하여 토양세정 후 발생되는 유출수 중의 유수를 분리하기 위한 적정 운전조건에 관하여 고찰하였다. 전압에 의한 유수분리 효율을 관찰한 결과, 전기분해 1시간 후 3V의 전압만으로도 88% 정도의 제거율을 나타내었으며 6V 이상의 전압에서는 90% 정도로 거의 비슷한 제거율을 나타내어 대부분의 에멀젼이 분리됨을 확인할 수 있었다. 동일조건에서는 전기분해 시간이 경과될 수록 분리효율이 향상되었으며, 전극 간격이 넓어질수록 같은 효율을 얻기 위해 소요되는 전압의 크기가 커짐을 알 수 있었다. 전기분해 시 양극에서는 OH$^{-}$의 방전으로 발생되는 산소에 의해 산화반응이 일어나며, 음극에서는 H$^{+}$가 방전되어 발생되는 수소에 의해 환원반응이 일어나며 미세한 기포가 형성된다. 유분의 부상분리 현상은 유분의 (-)charge와 전기분해에 의해서 발생되는 양이온의 결합으로 인한 중화반응 및 음극에서 발생되는 미세 수소기포로 인만 부상분리가 대부분을 차지하며, 전압 및 전기분해 시간이 증가하고 전극 간격이 좁을수록 음극에서 발생되는 미세기포의 양이 증가되어 부상효과가 크게 나타나는 것으로 판단된다. 전극 종류는 구리 > 알루미늄 > 철 > 티타늄 순으로 효율을 나타내었으며, 이는 양극으로 사용된 이러한 금속들의 전기전도도 차이에 의해 일어나는 현상으로 판단된다

  • PDF

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.

Oxidation of Phenol Using Ozone-containing Microbubbles Formed by Electrostatic Spray (전기장에 의해 생성된 미세기포를 이용한 페놀의 오존산화)

  • Shin, Won-Tae;Jung, Yoo-Jin;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1292-1297
    • /
    • 2005
  • The use of ozone in water and wastewater treatment systems has been known to be a process that is limited by mass transfer. The most effective way to overcome this limitation is to increase the interfacial area available for mass transfer by decreasing the size of the ozone gas bubbles that are dispersed in solution. Electrostatic spraying(ES) of ozone into water was investigated in this work as a method of increasing the rate of mass transfer of ozone into a solution and thereby increasing the rate of phenol oxidation. Results were obtained for ES at input power levels ranging from 0 to 4 kV and compared with two different pore-size bubble diffusers($10{\sim}15{\mu}m$ and $40{\sim}60{\mu}m$). It was determined that the rate of mass transfer could be increased by as much as 40% when the applied voltage was increased from 0 to 4 kV as a result of the smaller bubbles generated by ES. In addition, ES was shown to be more effective than the medium-pore-size($10{\sim}15{\mu}m$) bubble diffuser and the best results were achieved at low gas flow rates.

Effect of Nano Bubble Oxygen and Hydrogen Water on Microalgae (나노기포 산소수 및 수소수가 미세조류 배양에 미치는 영향)

  • Choi, Soo-Jeong;Kim, Young-Hwa;Jung, In-Ha;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.324-329
    • /
    • 2014
  • Microalgae Nannochloropsis oculata (N. oculta) and Chlorella vulgaris (C. vulgaris) are important sources for biodisel because of the high content of neutral lipids. Stable nano bubble is maintained for a long time and therefore it is possible for use in biotechnology. In this study, effects of nano bubble oxygen or hydrogen water on the microalgae growth were characterized. The cell growth in nano bubble water was similar to that of control, and the total lipid content was rather low. But, chlorophyll content of N. oculata grown in nanno bubble oxygen and hydrogen water increased 54% and 30%, and increased 59%, 39% in C. vulgaris. Carotenoid content also increased 21%, 25% in N. oculata and 49%, 29% in C. vulgaris grown in nano bubble oxygen and hydrogen water. From these results, nano bubble water seems to enhance the photosynthetic capacity of microalgae.

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 대한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1891-1896
    • /
    • 2003
  • The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.

  • PDF