• Title/Summary/Keyword: 미세튜브

Search Result 133, Processing Time 0.037 seconds

A Study on the Structural Integrity Considering the Installation of a Micro-tube Heat Exchanger (미세튜브 열교환기의 장착을 고려한 구조건전성에 관한 연구)

  • Oh, Se Yun;Kim, Tae Jin;Cho, Jong Rae;Jeong, Ho Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.447-451
    • /
    • 2015
  • The objective of this study is to predict the structural characteristics of a heat exchanger mounted on an aircraft engine using finite element analysis. The plastic fracture and life of the heat exchanger were estimated by a thermo-mechanical analysis. Tensile tests were conducted under high temperature conditions (700, 800, 900, 1000 K) using five specimens to obtain the mechanical properties of the Inconel 625 tubes. To assess the structural characteristics of the heat exchanger, the full and partial models were applied under the operating conditions given by the thermo-mechanical and inertial load. As a result, the case, tubesheet, flange, and mounting components have a reasonable safety margin to the allowable stress assuming a fatigue strength of Inconel 625 of 10000 cycles under 1000 K.

Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission (전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능)

  • Park, Joung-Man;Jang, Jung-Hoon;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyu;Lee, Woo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.411-422
    • /
    • 2010
  • Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

Morphology and Electrical Conductivity of Polystyrene/Carbon Nanotube Microcellular Foams Polymerized by High Internal Phase Emulsions (고내상 에멀젼 중합법으로 제조한 폴리스티렌/탄소나노튜브 미세기공 발포체의 모폴로지 및 전기 전도도)

  • Noh, Won-Jin;Kang, Myung-Hwan;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.579-585
    • /
    • 2012
  • Polystyrene/carbon nanotube (CNT) microcellular foams were prepared to have electrically conductive properties via high internal phase emulsion polymerization. In this study, we have investigated the effects of surface modification of CNT, surfactant content and dispersion time to improve the stability of emulsion and the electrical conductivity of foam. Acid treatment and a surfactant were used to effectively disperse CNTs in the aqueous phase. In the organic phase, CNTs were used after a surface modification with organic functional groups. The degree of dispersion of CNTs was estimated by the electrical conductivity of resultant microcellular foams. With raw CNTs dispersed with the surfactant in the aqueous phase, substantial conductivity increase was observed but the foams were slightly shrunk. The foams prepared with organically modified CNTs dispersed in the organic phase showed stable cell morphology without shrinkage, but displayed limitation to improve the conductivity.

Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements (미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Interfacial evaluation was investigated for single-carbon fiber/phenolic and carbon nanotube (CNT)-phenolic composites by micromechanical technique and electrical resistance measurement combined with wettability test. Compressive strength of pure phenol and CNT-phenolic composites were compared using Broutman specimen. The contact resistance of CNT-phenolic composites was obtained using a gradient specimen by two and four-point methods. Surface energies and wettability by dynamic contact angle measurement were measured using Wilhelmy plate technique. Since hydrophobic domains are formed as heterogeneous microstructure of CNT in the surface, the dynamic contact angle exhibited more than $90^{\circ}$. CNT-phenolic composites exhibited a higher apparent modulus than neat phenolic case due to better stress transferring effect. Work of adhesion, $W_a$ between single-carbon fiber and CNT-phenolic composites exhibited higher than neat phenolic resin due to the enhanced viscosity by CNT addition. It was consistent with micro-failure patterns in microdroplet test.

Developing an Early Leakage Detection System for Thermal Power Plant Boiler Tubes by Using Acoustic Emission Technology (음향방출법을 이용한 발전용 보일러 튜브 미세누설 조기 탐지 시스템 개발 및 성능 검증)

  • Lee, Sang Bum;Roh, Seon Man
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.181-187
    • /
    • 2016
  • A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (ⵁ2, ⵁ5, ⵁ10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⵁ2 mm and ⵁ5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

Nanotube-tip AFM for the application of photonic devices (나노튜브 탐침을 이용한 미세 광소자 측정 개선)

  • 정기영;송원영;오범환;박병천
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.302-303
    • /
    • 2003
  • 원자간력-현미경(Atomic Force Microscope)은 비파괴적인 방법으로 광소자의 단면 형상과 거칠기에 관한 정보를 원자단위의 해상도로 얻어낼 수 있다. 그러나 탐침의 형상에 의해서 공간분해능에 제한을 받는다. 이 문제를 해결하기 위해, 원자간력-현미경 탐침의 끝부분에 나노튜브를 부착하였다. 주사형 전자현미경에 설치한 나노조작기를 사용하여 나노튜브를 탐침에 밀착하도록 이동시킨 후에, 탄화물 증착으로 접착시키는 방법을 사용하였다.

  • PDF

Measurement of 3D Flow inside Micro-tube Using Digital Holographic PTV Technique (디지털 Holographic PTV기법을 이용한 미세튜브 내부 3차원 유동장 측정)

  • Kim, Seok;Kim, Ju-Hee;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.177-178
    • /
    • 2006
  • Digital holographic particle tracking velocimetry (HPTV) is developed by single high-speed camera and single continuous laser with long coherent length. This system can directly capture 4000 hologram fringe images for 1 second through a camera computer memory. The 3D particle location is made of the reconstruction by using a computer hologram algorithm. This system can successfully be applied to instantaneous 3D velocity measurement in the water flow inside a micro-tube. The average of 100 instantaneous velocity vectors is obtained by reconstruction and tracking with the time of evolution of recorded fringes images. In the near future, we will apply this technique to measure 3D flow information inside various micro structures.

  • PDF

Interfacial Properties and Sensing of Carbon Nanofiber/Tube and Electrospun Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique (전기저항측정 및 미세역학시험법을 이용한 탄소나노섬유/튜브 및 전기방사된 나노섬유/에폭시 복합재료의 계면특성 및 감지능 연구)

  • Jung Jin-Gyu;Kim Sung-Ju;Park Joung-Man
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2005
  • Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites have been investigated by using electro-micromechanical technique. The electrospun PVDF nanofibers were also prepared as a piezoelectric sensor. The electro-micromechanical techniques were applied to evaluate sensing response of carbon nanocomposites by measuring electrical resistance under an uniform cyclic loading. Composites with higher volume content of CNT showed significantly higher tensile properties than neat and low volume$\%$ CNT composites. CNT composites showed humidity sensing within limited temperature range. CNT composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to crystallinity increase, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also showed sensing effect on humidity and temperature as well as stress transferring. Nanocomposites and electrospun PVDF nanofiber web can be applicable for sensing application.

Tubing Wear and Spallation Induced by Roller pumps in Cardiopulmonary Bypass (심폐바이패스 롤러펌프에 의한 튜브 마모 및 폐쇄)

  • 김원곤;성기익;윤철용;신윤철
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 1999
  • 심폐바이패스시 발생할 수 있는 튜브 마모 및 파쇄는 롤러펌프의 반복되는 압박에 의해 롤러펌프에 장착된 튜브 내벽에 균열이 생기고 이로 인해 미세한 비생물적 조각들이 혈액중으로 떨어져 나가는 현상을 말하는데, 임상적으로 치명적인 색전증을 초래할 수 있다. 그러나 아직 롤러펌프 튜브로 사용되는 PVC 및 실리콘 튜브 중 어느 쪽이 마모 및 파쇄 관점에서 더 우수한지는 체계적으로 밝혀지지 않고 있다. 이에 본 연구는 두 종류의 튜브를각각 일정 기간 롤러펌프에 장착하여 작동시킨 뒤 튜브내외면을 육안 및 주사형 전자현미경으로 관찰하였다. 즉 PVC 및 실리콘 튜브 (내경 1/2 인치의)들을 미리 정해진 폐쇄도 조절에 의해 폐쇄 회로 심폐비이패스 롤러펌프 헤드에 장착시키고 4.500ml/min에서 각각 4차례씩 1,2,4,6 시간 작동시켰다. 파쇄에 의한 색전 관찰 실험에서는 회로 중간에 동맥여과기를 설치하고 각각 6,9시간 씩 롤러펌프를 작동시켰다. 실험 후 튜브 및 여과기들을 수거한 후 육안 및 주사형 전자현미경 분석을 시행하였다. 실험후 튜브 및 여과기들을 수거한 후 육안 및 주사형 전자현미경을 분석을 시행하였다. 튜브 외부의 육안 관찰 결과 일반적으로 실라스틱 튜브에서의 외부 마모가 PVC 튜브에 비해 현저하였다. 주사형 전자현미경 관찰에서 PVC 튜브에서의 홈은 좁으면서 경계선이 뚜렷한 특징을 보였고 3시간 이상 롤러와 접촉한 튜브들에게서는 깊은 균열이 간헐적으로 관찰되었다. 반면, 실라스틱에서의 홈은 좁으면서도 경계선이 뚜렷한 특징을 보였고 3시간 이상 롤러와 접촉한 튜브들에게서는 깊은 균열이 간헐적으로 관찰되었다.반면 실라스틱에서의 튜브들에서는 홈이 상대적으로 넓고 경계가 덜 명확했으며, 특징적으로 V 자 모양의 융기부들이 간헐적으로 관찰되었다. 실라스틱 및 PVC 튜브 모두에서 50u 전후의 Craters 가 간헐적으로 관찰되었다. 여과기의 여과망에 대한 주사형 전자현미경 분석 결과 실라스틱과 PVC 튜브 실험군 모두에서 색전입자로 의심되는조각들이 발견되었으나 두군간 정량적 비교는 어려웠다. 결론적으로 롤러펌프에 의한 튜브 마모 및 파쇄현상은 실리콘 및 PVC 튜브의 재질에 따라 그 양상에는 차이가 있으나 임상적인 측면에서는 어느 쪽도 상대적인 우수성이 입증되지 못하였다.

  • PDF

Experimental Investigation on Flow Characteristics of Chicken Blood in a Micro Tube Using a Micro-PIV Technique (마이크로 PIV를 이용한 미세튜브 내부 조류 혈액유동에 관한 실험적 연구)

  • Yeo, Chang-Sub;Ji, Ho-Seong;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1027-1034
    • /
    • 2006
  • In order to investigate flow characteristics of chicken blood in a micro tube of 100$\mu$m in diameter, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, 2-head Nd:YAG laser, 12 bit cooled CCD camera and a delay generator. Chicken blood with 40% hematocrit was supplied into a micro tube using a syringe pump. The blood flow shows clearly the cell free layer near the tube wall and its thickness is increased with increasing the flow speed. The hemorheological characteristics of chicken blood, including shear rate and shear stress were estimated from the PIV velocity field data obtained. Since the aggregation index of chicken blood is less than 50% of human blood, non-Newtonian flow characteristics of chicken blood are smaller than those of human blood. As the flow rate increases, the degree of flatness in the velocity profile at the center region is decreased and the parabola-shaped shear stress distribution becomes to have a linear profile. Under the same flow rate, chicken blood shows higher shear stress, compared with human blood.