• Title/Summary/Keyword: 미세토양

Search Result 222, Processing Time 0.022 seconds

Development of a Coarse Lunar Soil Model Using Discrete Element Method (이산요소법을 이용한 성긴 달토양 수치해석모델 개발)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.26-34
    • /
    • 2019
  • In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.

Changes in Physical and Chemical Properties of Sandy Loam Soils by Hematite Addition (적철석 첨가에 의한 사질양토의 물리·화학적 특성변화)

  • Kim, Jae Gon;Dixon, Joe B.;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.291-296
    • /
    • 1998
  • Pedogenic hematite is a well known agent for sink of pollutants and nutrients and for aggregation of particles in soils. Changes in physical and chemical properties of two sandy loam soils (Anahuac and Crowley soils) from the Southern Coastal Plain, the United States of America, were tested after adding finely ground crystalline hematite prepared for drilling fluid weighting material. There was an increase in hydraulic conductivity (HC) of the soils with addition of up to 3% by weight of hematite but a decrease in HC with addition of more hematite. The aggregate stability (AS) of the soils was not affected by adding hematite. Anahuac soil with higher content of organic matter and lower sodium adsorption ratio (SAR) had higher values of HC and AS than Crowley soil. Adding hematite also resulted in a slight increase in zinc (Zn) adsorption by the soils, but had no influence on the adsorption of phosphate.

  • PDF

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Redox Characteristic and Evolution of a Fragipan of Gangreung Series Commonly Developed in Coastal Terraces (해성단구지에서 발달된 강릉통의 이쇄경반층(Btx) 토양의 산화.환원적 특성에 관한 연구)

  • Zhang, Yong-Seon;Moon, Yong-Hee;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Park, Chan-Won;Yoon, Sung-Won
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.137-144
    • /
    • 2012
  • Soil pan typically presents the problems in soil water movement or in aeration which is not appropriate for a plant root growth, In this study physico-chemical characteristics of soils and micromorphological characteristic of clay accumulated zone were investigated to identify redox characteristic and evolution of a fragipan of Gangreung series commonly developed in coastal terraces. Gangreung series is classified as Aquic Fragiudalfs according to the USDA soil taxonomy. It is known that sedimentary ocean floor results in soil pan having parallel liner soil structure due to landscape evolution around 200 to 250 million years ago. it is considered that illite, kaolinite, and vermiculite are major clay minerals contained in a fragipan of Gangreung series. Mixed gray and reddish brown colored band around soil pores was found and would be the redoxmorphic features of fragipan. It is possibly due to accumulated illuvial clay and ferriargillans in soil pores and aggregates in reducing conditions eluding ferrous material. Therefore, mixed colored band around pores in soils of Gangreung series would be developed from the eluted ferrous materials which were accumulated in fragipan during the emerged land formation.

Detection of fluorescence from soils contaminated with monoaromatic hydrocarbons (유류 오염 토양에서의 단일방향족 탄화수소 농도 측정을 위한 자외선 형광 분석에 관한 연구)

  • 김우진;박재우;이주인
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • In order to determine the contamination of the aromatic hydrocarbons in soil, a fiber-optic sensing technique with fluorescence detector has been proposed. Previous researches have shown that the optimal condition for detecting benzene, toluene, ethylbenzene, xylene (BTEX) was 260 nm /290 nm (excitation/emission wavelength). However, broader fluorescence spectra of BTEX-polluted soil sample ranging from 300 nm to 600 nm were observed. Additionally, the intensity of fluorescence increased with increasing BTEX concentration, which was conspicuous in the fine-particle soil, The overall results indicated that the suggested technique could be useful for in-situ monitoring system for subsurface oil-storage tank.

For Refuse of marine dredged eco-friendly cleaning technology (미세 해양오염퇴적물의 생물학적 처리기술 개발)

  • Kim, In-Soo;Ha, Shin-Young;Jeong, Kyung-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.167-168
    • /
    • 2012
  • 본 연구는 해양퇴적물 준설 중 해양의 탁도와 2차오염을 유발하는 미세한 입자의 퇴적물을 생물학적으로 처리하는 친환경 정화기술로 유용미생물제제(BM-S-1)를 투여한 Lab Scale의 실험장치를 이용하여 기초 실험을 수행하였다. 유용미생물제제(BM-S-1)가 우점되어 있는 Lab Scale 실험장치를 운전하여 유기물 정량분석방법인 COD, T-N, T-P를 분석해본 결과 모든 항목이 약 98% 이상 처리됨을 확인할 수 있었다. 특히 본 실험대상물질인 해양퇴적물은 고농도의 염분이 함유되어 있어 기존기술만으로는 생물학적 처리가 어려웠지만, 본 연구에서 사용된 유용미생물제제(BM-S-1)은 염분이 함유된 오염 퇴적물에서도 효과적인 생물학적 처리가 가능함을 확인 할 수 있었다. 따라서 준설 시 2차오염을 유발시키는 미세한 입자의 해양퇴적물을 본 공법으로 처리하여 방류할 시 친환경적인 준설이 이루어질 수 있으며 이 때 처리되어 배출되는 미세토양은 재이용 가능하다고 판단된다.

  • PDF

Chemical Oxidation Treatment of Hydrocarbon-Contaminated Eine Soil by ${H_2}{O_2}$/$Fe^0 System (${H_2}{O_2}$/$Fe^0시스템을 이용한 유류오염 미세토양의 화학적 산화처리)

  • 지원현;김지형;강정우;김성용;장윤영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.13-20
    • /
    • 2001
  • In this Study, application of ${H_2}{O_2}$/$Fe^0 oxidation System (Fenton-like oxidation) for the oxidative treatment of high-level soil contamination with hydrocarbon was suggested. The characteristics of Fenton-like oxidation of diesel-contaminated fine soil was experimentally probed in a batch system varying initial pH, zero valent iron and hydrogen peroxide levels, and initial diesel concentration. Contaminant degradation was identified by total petroleum hydrocarbon(TPH) concentration with gas chromatography. The batch experiments showed that the optimal ${H_2}{O_2}$and $Fe^0 dosage, 10% ${H_2}{O_2}$+ 20% $Fe^0 removed 65% of initial TPH concentration (10,000mg/kg) at a retention time of 24h. And the TPH removal in the ${H_2}{O_2}$/$Fe^0 system effectively proceeded only within a limited pH range of 3-4. The zero valent iron-catalyzed Fenton-like oxidation of diesel-contaminated soil was more competitive to the $FeSO_4-catalyzed system (Fenton oxidation) in removal efficiency and cost especially for the treatment of high level contamination.

  • PDF

Aging Effects On Partitioning Coefficients of Cd, Cu, and Zn in Metal-spiked Soils (토양에 유입된 카드뮴, 구리, 아연의 시간에 따른 분배 계수의 변화)

  • Kim, Bo-Jeong;McBride, Murray B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • Temporal changes of metal solubility have been repeatedly observed in soils equilibrated with metal salt solutions. This phenomenon is known as aging, yet factors that affect the degree of metal aging remain largely unexamined. In this study, we compared the extent of aging on metal partitioning depending on soil, metal, and metal loading. Five soils spiked with four levels of Cd (2.5-20 mg ${kg}^{-1}$), Cu, and Zn (50-400 mg ${kg}^{-1}$) salt solutions were aged in the laboratory up to 1 year. The partitioning coefficient ($K_d$) of each metal was calculated from the ratio of total to dissolved metal concentration in samples collected at times ranging from 1 day to 1 year. The highest $K_d$ values for Cd, Cu and Zn were recorded in a Histosol, Andisol, and fine-textured Alfisol, respectively, whereas the lowest $K_d$ was recorded for an Oxisol and coarsetextured Alfisol. For all soils, a pattern of increasing Kd with aging was evident for Cd and Zn, but not Cu. Rapid Cu sorption was limited when dissolved organic matter was high in soils. In highly-retentive soils, $K_d$ values seemed to be insensitive to metal loading, although a longer period was required for the higher metal loadings to reach the same degree of metal aging as the lower loadings. In soils with low sorption capacity, the $K_d$ values were determined more by metal loading than by aging. Therefore, marked differences can be expected in the degree of metal aging in spiked soils by the soil type, metal and amount of metal added.

Mobility of Microplastics in Subsurface Environments: Current Knowledge and Perspectives (지중환경에서 미세플라스틱의 이동성에 대한 고찰)

  • Kim, Youn-Tae;Han, Weon Shik;Yoon, Hye-On
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • Plastics have become essential materials in human life for several decades. Meanwhile, the inadvertent spread of plastic debris from the use of many plastic products has raised global environmental concerns. The risk of microplastics in subsurface environment has received little attention because soil is considered to confine microplastics within the matrix. However, the concentration of microplastics in soil unavoidably increased as a result of an increase in plastic production and use. Based on lab experiments, several researches claimed that microplastics possibly penentrate soil layers. Recently, a few researches reported the occurrence of microplastics in groundwater. This study reviewed the recent reports of microplastic occurrences in soil and groundwater, and the modeling studies for simulating transport of microplastics. Additionally, the difficulties and limits in microplastics researches in soil and groundwater are discussed. Finally, several perspectives on microplastic studies in subsurface environment are suggested.