Browse > Article
http://dx.doi.org/10.7857/JSGE.2019.24.3.001

Mobility of Microplastics in Subsurface Environments: Current Knowledge and Perspectives  

Kim, Youn-Tae (Institute of Natural Sciences, Yonsei University)
Han, Weon Shik (Department of Earth System Sciences, Yonsei University)
Yoon, Hye-On (Korea Basic Science Institute (KBSI))
Publication Information
Journal of Soil and Groundwater Environment / v.24, no.3, 2019 , pp. 1-12 More about this Journal
Abstract
Plastics have become essential materials in human life for several decades. Meanwhile, the inadvertent spread of plastic debris from the use of many plastic products has raised global environmental concerns. The risk of microplastics in subsurface environment has received little attention because soil is considered to confine microplastics within the matrix. However, the concentration of microplastics in soil unavoidably increased as a result of an increase in plastic production and use. Based on lab experiments, several researches claimed that microplastics possibly penentrate soil layers. Recently, a few researches reported the occurrence of microplastics in groundwater. This study reviewed the recent reports of microplastic occurrences in soil and groundwater, and the modeling studies for simulating transport of microplastics. Additionally, the difficulties and limits in microplastics researches in soil and groundwater are discussed. Finally, several perspectives on microplastic studies in subsurface environment are suggested.
Keywords
Plastic; Microplastics; Soil; Groundwater; Transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Waring, R.H., Harris, R.M., and Mitchell, S.C., 2018, Plastic contamination of the food chain: A threat to human health?, Maturitas, 115, 64-68.   DOI
2 Yu, M., van der Ploeg, M., Lwanga, E.H., Yang, X., Zhang, S., Ma, X., Ritsema, C.J., and Geissen, V., 2019, Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows, Environ. Chem., 16, 31-40.   DOI
3 Zhang, G.S. and Liu, Y.F., 2018, The distribution of microplastics in soil aggregate fractions in southwestern China, Sci. Total Environ., 642, 12-20.   DOI
4 Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., and Luo, Y., 2018, The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea, Geoderma, 322, 201-208.   DOI
5 Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., and Geissen, V, 2019, Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal, Sci. Total Environ., 671, 411-420.   DOI
6 DeNovio, N.M., Saiers, H.E., and Ryan, H.N., 2004, Colloid movement in unsaturated porous media: Recent advances and future directions, Vadose Zone J., 3, 338-351.   DOI
7 Dong, Z., Qiu, Y., Zhang, W., Yang, Z., and Wei, L., 2018, Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater, Water Res., 143, 518-526.   DOI
8 Eo, S., Hong, S.H., Song, Y.K., Lee, J., Lee, J., and Shin, W.J., 2018, Abundance, composition, and distribution of microplastics larger than $20{\mu}m$ in sand beaches of South Korea, Environ. Pollut., 238, 894-902.   DOI
9 Fuller, S. and Gautam, A., 2016, A procedure for measuring microplastics using pressurized fluid extraction, Environ. Sci. Technol., 50, 5774-5780.   DOI
10 G20, 2017, G20 Action Plan on Marine Litter, Hamburg 2017 G20, Germany.
11 Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., and Purnell, P., 2018, An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling, J. Haz. Mater., 344, 179-199.   DOI
12 He, D., Luo, Y., Lu, S., Liu, M., Song, Y., and Lei, L., 2018, Microplastics in soils: Analytical methods, pollution characteristics and ecological risks, Trac-Trends Anal. Chem., 109, 163-172.   DOI
13 Alimi, O.S., Budarz, J.F., Hernandez, L.M., and Tufenkji, N.T., 2018, Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport, Environ. Sci. Technol., 52, 1704-1724.   DOI
14 He, J., Wang, D., and Zhou, D., 2019, Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating, Sci. Total Environ., 648, 102-108.   DOI
15 Hodson, M.E., Duffus-Hodson, C.A., Clark, A., Prendergast-Miller, M.T., and Thorpe, K.L., 2017, Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrate, Environ. Sci. Technol., 51, 4714-4721.   DOI
16 Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A.A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., and Muhammad, S., 2018, Biodegradation of plastics: current scenario and future prospects for environmental safety, Environ. Sci. Pollut. Res., 25, 7287-7298.   DOI
17 Blasing, M. and Amelung, W., 2018, Plastics in soil: Analytical methods and possible sources, Sci. Total Environ., 612, 411-435.
18 Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., and Yates, S.R., 2003, Modeling colloid attachment, straining, and exclusion in saturated porous media, Environ. Sci. Technol., 37, 2242-2250.   DOI
19 Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., and Yates, S.R., 2006, Significance of straining in colloid deposition: Evidence and implications, Water Resour. Res., 42, W12S15.
20 Bradford, S.A., Torkzaban, S., Leij, F., Simunek, J., and van Genuchten, M.T., 2009, Modeling the coupled effects of pore space geometry and velocity on colloid transport and retention, Water Resour. Res., 45, W02414.   DOI
21 Huffer, T., Praetorius, A., Wagner, S., van der Kammer, F., and Hofmann, T., 2017, Microplastic exposure assessment in aquatic environments: Learning from similarities and differences to engineered nanoparticles, Environ. Sci. Technol., 51, 2499-2507.   DOI
22 Bradford, S.A. and Leij, F.J., 2018, Modeling the transport and retention of polydispersed colloidal suspensions in porous media, Chem. Eng. Sci., 192, 972-980.   DOI
23 Chae, Y. and An, Y.J., 2018, Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review, Environ. Pollut., 240, 387-395.   DOI
24 Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., and Svendsen, C., 2017, Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities, Sci. Total Environ., 586, 127-141.   DOI
25 Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., and Law, K.L., 2015, Plastic waste inputs from land into the ocean, Science, 347, 768   DOI
26 Jang, M., Shim, W.J., Han, G.M., Rani, M., Song, Y.K., and Hong, S.H., 2016, Styrofoam debris as a source of hazardous additives for marine organisms, Environ. Sci. Technol., 50, 4951-4960.   DOI
27 Kim, K.-J., Lee, H.-S., and Kim, Y.-J., 2017, Distribution of microplastics on side of pavement in M city, J. Kor. Soc. Urban Environ., 17(4), 419-423.
28 Kim, S.W. and An, Y.-J., 2019, Soil microplastics inhibit the movement of springtail species, Environ. Int., 126, 699-706.   DOI
29 Koelmans, A.A., Nor, N.H.M., Hermsen, E., Kooi, M., Mintenig, S.M., and De France, J., 2019, Microplastics in freshwaters and drinking water: Critical review and assessment of data quality, Water Res., 155, 410-422.   DOI
30 Lazar, A.N., Butterfield, D., Futter, M.N., Rankinen, K., Thouvenot-Korppoo, M., Jarritt, N., Lawrence, D.S.L., Wade, A.J., and Whitehead, P.G., 2010, An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modification and implications for fisheries, Sci. Total Environ., 408, 2555-2566.   DOI
31 Lehner, R., Weder, C., Petri-Fink, A., and Rothen-Rutishauser, B., 2019, Emergence of nanoplastic in the environment and possible impact on human health, Environ. Sci. Technol., 53, 1748-1765.   DOI
32 Li, S., Liu, H., Gao, R., Abdurahman, A., Dai, J., and Zeng, F., 2018, Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter, Environ. Pollut., 237, 126-132.   DOI
33 Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., and He, D., 2018, Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China, Environ. Pollut., 242, 855-862.   DOI
34 Lu, S., Zhu, K., Song, W., Song, G., Chen, D., Hayat, T., Alharbi, N.S., Chen, C., and Sun, Y., 2018, Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions, Sci. Total Environ., 630, 951-959.   DOI
35 Lv, W., Zhou, W., Lu, S., Huang, W., Yuan, Q., Tian, M., Lv, W., and He, D., 2019, Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China, Sci. Total Environ., 652, 1209-1218.   DOI
36 Mintenig, S.M., Loder, M.G.J., Primpke, S., and Gerdts, G., 2019, Low numbers of microplastics detected in drinking water from ground water sources, Sci. Total Environ., 648, 631-635.   DOI
37 Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., and Pivokonsky, M., 2019, Microplastics in dringking water treatment-Current knowledge and research needs, Sci. Total Environ., 667, 730-740.   DOI
38 Ng, E.L., Lwanga, E.H., Eldridge, S.M., Johnston, P., Hu, H.W., Geissen, V., and Chen, D., 2018, An overview of microplastic and nanoplastic pollution in agroecosystems, Sci. Total Environ., 627, 1377-1388.   DOI
39 Nizzetto, L., Futter, M., and Langaas, S., 2016a, Are agricultural soils dumps for microplastics of urban origin?, Environ. Sci. Technol., 50, 10777-10779.   DOI
40 Nizzetto, L., Bussi, G., Futter, M.N., Butterfield, D., and Whitehead, P.G., 2016b, A theoretical assessment of microplastic transport in river catchments and their retention by soil and river sediments, Environ. Sci. -Process Impacts, 18, 1050-1059.   DOI
41 O'Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W.M., and Hou, D., 2019, Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles, Environ. Pollut., 249, 527-534.   DOI
42 Panno, S.V., Kelly, W.R., Scott, J., Zheng, W., McNeish, R.E., Holm, N., Hoellein, T.J., and Baranski, E.L., 2019, Microplastic contamination in Karst groundwater systems, Groundwater, 57(2), 189-196.   DOI
43 Piehl, S., Leibner, A., Loder, M.G.L., Dris, R., Bogner, C., and Laforsch, C., 2018, Identification and quantification of macro- and microplastics on an agricultural farmland, Sci. Rep., 8, 17950.   DOI
44 PlasticsEurope, 2018, Plastics the Fact 2018. An Analysis of European Plastics Production, Demand and Waste Data, PlasticsEurope, Brussels, Belgium.
45 Prata, J.C. 2018, Airborne microplastics: Consequences to human health?, Environ. Pollut., 234, 115-126.   DOI
46 Rezaei, M., Riksen, M.J.P.M., Sirjani, E., Sameni, A., and Geissen, V., 2019, Wind erosion as a driver for transport of light density microplastics, Sci. Total Environ., 669, 273-281.   DOI
47 Prata, J.C., da Costa, J.P., Duarte, A.C., and Rocha-Santos, T., 2019, Methods for sampling and detection of microplastics in water and sediment: A critical review, Trac-Trends Anal. Chem., 110, 150-159.   DOI
48 Quik, J.T.K., Velzeboer, I., Wouterse, M., Koelmans, A.A., and van de Meent, D., 2014, Heteroaggregation and sedimentation rates for nanomaterials in natural waters, Water Res., 48, 269-279.   DOI
49 Razanajatovo, R.M., Ding, J., Zhang, S., Jiang, H., and Zou, H, 2018, Sorption and desorption of selected pharmaceuticals by polyethylene microplastics, Mar. Pollut. Bull., 136, 516-523.   DOI
50 Rilling, M.C., Ziersch, L., and Hempel, S., 2017, Microplastic transport in soil by earthworms, Sci. Rep., 7, 1362.   DOI
51 Scalenghe, R., 2018, Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options, Heliyon, 4, e00941.   DOI
52 Scheurer, M. and Bigalke, M., 2018, Microplastics in Swiss floodplain soils, Environ. Sci. Technol., 52, 3591-3598.   DOI
53 Shim, W.J., Hong, S.H., and Eo, S.E., 2017, Identification methods in microplastic analysis: a review, Anal. Methods, 9, 1384-1391.   DOI
54 Simunek, J., van Genuchten, M.T., and Sejna, M., 2008, Development and applications of the HYDRUS and STANMOD software packages and related codes, Vadose Zone J., 7, 587-600.   DOI
55 Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., and Ni, B.-J., 2019, Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Res., 152, 21-37.   DOI
56 Smedes, F., Rusina, T.P., Beeltje, H., and Mayer, P., 2017, Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene, Chemosphere, 186, 948-957.   DOI
57 Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Troger, J., Mu Munoz, K., Fror, O., and Schaumann, G.E., 2016, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ., 550, 690-705.   DOI
58 Stock, F., Kochleus, C., Bansch-Baltruschat, B., Brennholt, N., and Reifferscheid, G., 2019, Sampling techniques and preparation methods for microplastic analyses in the aquatic environment-A review, Trac-Trends Anal. Chem., 113, 84-92.   DOI
59 Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., and Russell, A.E., 2004, Lost at sea: Where is all the plastic?, Science, 304, 838.   DOI
60 Unice, K.M., Weeber, M.P., Abramson, M.M., Reid, R.C.D., van Gils, J.A.G., Markus, A.A., Vethaak, A.D., and Panko, J.M., 2019, Characterizing export of land-based microplastics to the estuary-Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed, Sci. Total Environ., 646, 1639-1649.   DOI
61 Wagner, S., Huffer, T., Praetorius, A., Klockner, P., Wehrhahn, M., Hofmann, T., and Reemtsma, T., 2018, Tire wear particles in the aquatic environment-A review on generation, analysis, occurrence, fate and effects, Water Res., 139, 83-100.   DOI
62 Wang, W. and Wang, J., 2018, Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis, Trac-Trends Anal. Chem., 108, 195-202.   DOI
63 Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., and Cai, L., 2017, Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals, Chemosphere, 171, 248-258.   DOI
64 Wang, F., Wong, C.S., Chen, D., Lu, X., Wang, F., and Zeng, E.Y., 2018, Interaction of toxic chemicals with microplastics: A critical review, Water Res., 139, 208-219.   DOI