• Title/Summary/Keyword: 미세먼지(PM-10)

Search Result 553, Processing Time 0.03 seconds

Design and Function Analysis of Dust Measurement Platform based on IoT protocol (사물인터넷 프로토콜 기반의 미세먼지 측정 플랫폼 설계와 기능해석)

  • Cho, Youngchan;Kim, Jeongho
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.79-89
    • /
    • 2021
  • In this paper, the fine dust (PM10) and ultrafine dust (PM2.5) measurement platforms are designed to be mobile and fixed using oneM2M, the international standard for IoT. The fine dust measurement platform is composed and designed with a fine dust measurement device, agent, oneM2M platform, oneM2M IPE, and monitoring system. The main difference between mobile and fixed is that the mobile uses the MQTT protocol for interconnection between devices and services without blind spots based on LTE connection, and the fixed uses the LoRaWAN protocol with low power and wide communication range. Not only fine dust, but also temperature, humidity, atmospheric pressure, volatile organic compounds (VOC), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and noise data related to daily life were collected. The collected sensor values were managed using the common API provided by oneM2M through the agent and oneM2M IPE, and it was designed into four resource types: AE and container. Six functions of operability, flexibility, convenience, safety, reusability, and scalability were analyzed through the fine dust measurement platform design.

Comparative Analysis of the Binary Classification Model for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 이진 분류 모델 비교 분석)

  • Jung, Yong-Jin;Lee, Jong-Sung;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • High forecast accuracy is required as social issues on particulate matter increase. Therefore, many attempts are being made using machine learning to increase the accuracy of particulate matter prediction. However, due to problems with the distribution of imbalance in the concentration and various characteristics of particulate matter, the learning of prediction models is not well done. In this paper, to solve these problems, a binary classification model was proposed to predict the concentration of particulate matter needed for prediction by dividing it into two classes based on the value of 80㎍/㎥. Four classification algorithms were utilized for the binary classification of PM10. Classification algorithms used logistic regression, decision tree, SVM, and MLP. As a result of performance evaluation through confusion matrix, the MLP model showed the highest binary classification performance with 89.98% accuracy among the four models.

Technological Advances for Particulate Matter Collection in Subway System (지하철 미세먼지 포집을 위한 기술적 진보)

  • Son, Youn-Suk;Ryu, Jae-Yong
    • Prospectives of Industrial Chemistry
    • /
    • v.21 no.2
    • /
    • pp.24-34
    • /
    • 2018
  • 본 연구에서는 지하역사 및 터널에서 발생되는 미세먼지의 현황 및 이를 저감하기 위한 기술의 동향을 조사하였다. 지하역사 및 터널의 미세먼지 농도는 주변 대기 중의 농도보다 높은 것으로 나타났다. 그 구성 성분에 있어서 다양한 중금속 및 발암물질들을 함유하고 있고, Fe의 농도가 가장 높게 나는 것을 알 수 있었다. 지하역사 및 터널의 미세먼지 농도는 주변 대기 농도와 같은 외부 요인뿐만 아니라 열차의 운행 수, 이용 승객수, 환기량과 같은 내부 요인도 큰 영향을 미치는 것을 확인할 수 있었다. 현재 지하역사 및 터널의 미세먼지를 저감하기 위해서 다양한 기술(환기팬, 스크린도어, 자성필터, 소형제트팬, 인공지능 환기시스템 등)들이 연구되고 있으며, 그 기술들은 현장 조건에 맞추어 사용되어야 그 실효성을 극대화시킬 수 있을 것이다.

Stabilization of Soil Moisture and Improvement of Indoor Air Quality by a Plant-Biofilter Integration System (식물-바이오필터에 의한 토양수분 안정화 및 실내 공기질 향상)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.751-762
    • /
    • 2015
  • This study was performed to investigate the stability of soil moisture in controlling air ventilation rate within a horizontal biofilter, and to compare removal efficiency (RE) of indoor air pollutants including fine dust, volatile organic compounds (VOCs), and formaldehyde (HCHO), depending on whether dieffenbachias (Diffenbachia amoena) were planted in the biofilter. The relative humidity, air temperature, and soil moisture contents showed stable values, regardless of the presence of D. amoena, and the plants grew normally in the biofilter. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter filled with only soil were at least 30% and 2%, respectively. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter including the plants were above 40% and 4%, respectively. RE for fine dust (PM10) weight was above 4% and 20%, respectively, in the biofilter containing only soil or soil together with plants. In the case of the biofilter filled with only soil, REs for xylene, ethylbenzene, toluene or total VOC (T-VOC) were each more than 63%; however, REs for benzene and formaldehyde (HCHO) were above 22% and 38%, respectively. In the biofilter with the plants, REs for xylene, ethylbenzene, toluene, and T-VOC were each above 72%, and REs for benzene and HCHO were above 39%. Thus, RE of the biofilter integrated with plants was found to be higher for volatile organic compounds than for fine dust. Hence, the biofilter was very effective for indoor air quality improvement and the effect was higher when integrated with plants.

Types of Smart Bus Stop and Their Impacts on Reducing Fine Dust Concentrations in Seoul (스마트버스정류장 유형에 따른 미세먼지 농도 저감효과)

  • Seo, Jeongki;Kim, Hyungkyoo
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.39-50
    • /
    • 2021
  • This research aims to provide guidelines with the appropriate type of smart bus stop to reduce the concentration of fine dust. To this end, we divided smart bus stops into two types: closed and open bus stops. The estimated reduction effect was compared and analysed by measuring the estimated PM10 and the estimated PM2.5 at five locations inside and outside a smart bus stop located in Gangnam gu, Seoul. The effect of reducing the amount of the fine dust concentration in external space was insignificant for both types of bus stops. The different effect of reducing the concentration of the amount between in internal space was relatively significant: the fine dust concentration was 26.0 ㎍/m3 for PM10 and 20.2 ㎍/m3 for PM2.5 at open-type bus stops; whilst was 2.4 ㎍/m3 for PM10 and 1.8 ㎍/m3 for PM2.5 at closed type bus stops. Based on the findings, a closed type bus stop is recommended when considering the cost of reducing fine dust. In addition, due to the ineffectiveness of reducing the amount of fine dust from the outside of the bus stop, additional provision of smart bus stops is required particularly in locations where demand exceeds the capacity of the inside. A clear definition of smart bus stop and it's minimum standard should also be considered.

Mass Concentration and Chemical Composition of $PM_{10} and PM_{2.5}$ in Iksan (익산지역 환경대기 중 $PM_{10} 및 PM_{2.5}$의 농도 및 화학조성)

  • 강공언;이종훈;김신도;양고수;김화옥
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.153-154
    • /
    • 2003
  • 최근 10년간 대기환경 개선대책으로 1차 오염물질인 이산화황과 총부유먼지(TSP)의 농도는 현저히 감소하고 있다. 그러나 자동차의 증가 등으로 미세먼지, 오존 둥 2차 대기오염물질의 오염도는 오히려 증가하고 있는 추세에 있다. 특히 미세먼지(PM$_{2.5}$)는 시정에 영향을 주어 체감오염도를 증가시킬 뿐만 아니라 PM$_{2.5}$ 내에 함유된 각종 유해물질과 중금속 등은 인체에 직접적인 영향을 주는 것으로 알려져 있다. (중략)(중략)

  • PDF

Characteristics of Indoor PM2.5 and the effect of air purifier and ventilation system on Indoor PM2.5 in the Knowledge Industrial Center office during the atmospheric PM2.5 warning (초미세먼지 주의보 시 지식산업센터 사무실의 실내 초미세먼지 농도 특성과 공기청정기와 환기장치의 영향)

  • Ji, Jun-Ho;Joo, Sang-Woo
    • Particle and aerosol research
    • /
    • v.16 no.3
    • /
    • pp.65-72
    • /
    • 2020
  • In this study, the indoor fine dust concentration in an office of the Korea Knowledge Industry Center was measured for about 80 hours when the concentration of atmospheric PM2.5 was very high. The effect of the operation of the air cleaner and the forced ventilation system on the indoor PM2.5 was investigated, and the particle size distribution of the indoor and outdoor particles was analyzed. When forced ventilator and air purifiers were partially used, the indoor PM2.5 concentrations were maintained between 27.7 ㎍/㎥ and 32.9 ㎍/㎥ when the atmospheric PM2.5 was 127.7 ㎍/㎥ to 141.6 ㎍/㎥ during working hours. It is more effective to operate the air purifier without operating the forced ventilation system when the concentration of the PM2.5 is high since the PM2.5 penetrating the installed filter is continuously introduced indoor from the outside.

A study on the Concentration and Chemical Characteristics in the Ambient of Incheon (인천시 대기중 미세먼지의 농도 및 화학적 특성에 관한 연구)

  • 허화영;장기원;원경호;정용원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.370-371
    • /
    • 2003
  • 인천시는 수도권의 외항으로 많은 발전을 하였으나, 반대 급부적으로 오염의 가중을 제어하지 못하고 있는 형편이다. 인천시의 여러 가지 환경문제 중에서도 대기환경 문제는 매우 심각하여 여러 가지 환경문제 중에서도 가장 민원이 많은 부분이다 또한 최근 들어 대기 중 먼지에 대한 관심은 주로 미세먼지에 집중되고 있으며, 우리나라의 먼지에 대한 대기환경기준과 대기오염 측정망의 항목은 공기역학적 직경 10$\mu\textrm{m}$이하의 PM$_{10}$으로 정해 놓고 있다. 그러나 최근 많은 연구에서 PM$_{10}$보다 미세한 먼지를 기준으로 설정하고 그 기준 농도도 낮추어야 한다는 주장이 제기되고 있다. (중략)

  • PDF

Evaluation Method of Cosmetics for the Effect of Fine Dust Adhesion Prevention Using Floating Chamber (부유챔버를 이용한 화장품의 미세먼지 부착방지 효과 평가법)

  • Kim, Woncheol;Kim, Han Jo;Boo, Yong Chool;Koh, Jae Sook;Baek, Ji Hwoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.319-327
    • /
    • 2020
  • Particulate matters (PM) are small particulate pollution that decrease the function of skin barrier, which causes inflammatory skin diseases and extrinsic aging. In this study, we evaluated the effect of preventing the adherence of PMs from several cosmetic products applied to human skin using iron oxide black. The PM floating chamber consists of skin exposure area, PM inlet, floating power device, and an outlet so that PM can be naturally attached to the skin while floating in the chamber. The change in skin brightness according to the floating concentration of alternative fine dust was checked to confirm the optimal floating concentration conditions. The intensity difference (before-after intensity, Δ) before and after adhesion of iron oxide black was proportional to the amount of PM adhered. The anti-adherence effect of iron oxide black on five cosmetic products were evaluated through 20 each subjects by comparing the amount of iron oxide black adhered on the control and treatment. The difference in brightness before and after the iron oxide black attached to the skin was calculated and compared with the control group(p < 0.05). When over 150 mg of iron oxide black was adhered on the skin, the interference of intensity was low and clearly showed the skin adhered pattern. According to the application of the five cosmetics, the intensity difference was significantly lower than the control group. This means that depending on the product, it prevented the attachment of iron oxide black. This study is a safe and useful method to confirm the prevention of PM skin adherence. In conclusion, cosmetics can prevent the adherence of PM on the skin according to the formulation or ingredients characteristics.

Analysis of the Seasonal Concentration Differences of Particulate Matter According to Land Cover of Seoul - Focusing on Forest and Urbanized Area - (서울시 토지피복에 따른 계절별 미세먼지 농도 차이 분석 - 산림과 시가화지역을 중심으로 -)

  • Choi, Tae-Young;Moon, Ho-Gyeong;Kang, Da-In;Cha, Jae-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.635-646
    • /
    • 2018
  • This study sought to identify the characteristics of seasonal concentration differences of particulate matter influenced by land cover types associated with particulate matter emission and reductions, namely forest and urbanized regions. PM10 and PM2.5 was measured with quantitative concentration in 2016 on 23 urban air monitoring stations in Seoul, classified the stations into 3 groups based on the ratio of urbanized and forest land covers within a range of 3km around station, and analysed the differences in particulate matter concentration by season. The center values for the urbanized and forest land covers by group were 53.4% and 34.6% in Group A, 61.8% and 16.5% in Group B, and 76.3% and 6.7% in Group C. The group-specific concentration of PM10 and PM2.5 by season indicated that the concentration of Group A, with high ratio of forests, was the lowest in all seasons, and the concentration of Group C, with high ratio of urbanized regions, had the highest concentration from spring to autumn. These inter-group differences were statistically significant. The concentration of Group C was lower than Group B in the winter; however, the differences between Groups B to C in the winter were not statistically significant. Group A concentration compared to the high-concentration groups by season was lower by 8.5%, 11.2%, 8.0%, 6.8% for PM10 in the order of spring, summer, autumn and winter, and 3.5%, 10.0%, 4.1% and 3.3% for PM2.5. The inter-group concentration differences for both PM10 and PM2.5 were the highest in the summer and grew smaller in the winter, this was thought to be because the forests' ability to reduce particulate matter emissions was the most pronounced during the summer and the least pronounced during the winter. The influence of urbanized areas on particulate matter concentration was lower compared to the influence of forests. This study provided evidence that the particulate matter concentration was lower for regions with higher ratios of forests, and subsequent studies are required to identify the role of green space to manage particulate matter concentration in cities.