• Title/Summary/Keyword: 미세결합강도

Search Result 200, Processing Time 0.033 seconds

Mechanical Properties of VARTM Processed Abaca Fabric Composites (VARTM 공정으로 성형된 Abaca 패브릭 복합재의 기계적 특성평가)

  • Byun, Gill Jae;Ha, Jong-Rok;Kim, Byung-Sun;Joe, Chee Ryong;Ok, Ju Seon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.198-204
    • /
    • 2012
  • The objective of this study is to improve the mechanical properties in abaca fabric/epoxy composites produced using a VARTM process. The mechanical properties were improved by increasing the surface roughness of the fabric through plasma polymerization and improving the interfacial adhesion between the epoxy and the fabric through changing its hydrophilic properties to the hydrophobic properties. Plasma polymerization at atmospheric pressure and room temperature was used, and the optimal polymerization time to improve the mechanical properties was investigated. NaOH treatment on the fabric was also carried out for the comparison. The composite fabricated using the fabric polymerized for 10 seconds shows the highest tensile strength compared to that of none-polymerized or NaOH treated. Plasma polymerization for more than 20 seconds exhibits decrease in the tensile strength. As a result, the plasma polymerization for more than 20 seconds may have caused some damages on the surface of the fabrics. Also, the hydrophilic abaca represents a tendency of presenting the hydrophobic properties in absorption and sedimentation tests.

The Optimum Addition Ratio of Nano Hydroxyapatite to Glass Ionomer Dental Cement (Changes in Demineralization Resistance and Bonding Strength of Light Cured Glass Ionomer after the Addition of Nano Hydroxyapatite in Various Ratio) (글래스아이오노머에 대한 나노 하이드록시아파타이트의 최적 첨가 비율(나노 하이드록시아파타이트의 첨가 비율에 따른광중합형 글래스아이오노머의 결합강도와 탈회저항성의 변화 비교))

  • Kim, Nam Hyuk;Kim, Seong Oh;Song, Je Seon;Lee, Jae Ho;Son, Heung Kyu;Choi, Byung Jai;Choi, Hyung Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.3
    • /
    • pp.159-167
    • /
    • 2013
  • The aim of this study was to evaluate changes in demineralization resistance and bonding strength of light cured glass ionomer after the addition of nano hydroxyapatite in various ratios. Fuji II LC GIC (GC Co., Japan) was used as the control group and also as a base material for experimental group. HA was mixed into the RMGIC at various ratio to create a HA-LC GIC mixture, preparing six experimental groups, i.e. 5%, 10%, 15%, 20%, 25%, 30% HA-LC GIC. According to the results, the bonding strength increased due to the addition of HA, showing the maximum value at the 15% nano HA group (p < 0.05). Under CLSM observation after 4 days of demineralization, the HA groups were more resistant to demineralization compared to the control group. No significant difference was observed between HA groups. In analysis through SEM, the HA groups showed attachment of granular materials and decreased demineralized tooth surfaces under influence of HA particles.

Fabrication Process and Mechanical Properties of Co-based Metal Bond in Diamond Impregnated Tools (다이아몬드 공구용 코발트계 합금 결합제의 제조 및 기계적 성질)

  • Lee, Gi-Seon;Jeong, Seung-Bu
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.532-539
    • /
    • 2000
  • Co-0.5C-(15~20)Cr-20Ni-8W-(2~7)Fe alloy bond in diamond-impregnated abrasive tool was synthesized by ball-milling and mechanical alloying process. When the powders were mechanical alloyed for 6h, micro-welding in most metal powders was observed irrespective of addition of stearic acid. Without stearic acid in metal powders, partial-ly coarse powders were obtained, which could be unfaverable to the densification of composite of composite powders. The hot-pressed compacts showed rupture strength of 1100MPa and hardness of about $46H_{RC}$, respectively.

  • PDF

양성전분을 이용한 신문용지의 품질개선 및 생산성 향상

  • Lee, Hak-Rae;Ryu, Hun;Ham, Chung-Hyeon;Choi, Cheol-Hui;Jo, Seok-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.33-33
    • /
    • 1999
  • 고지 사용율을 증가시킴으로써 원가 절감을 모색하고 있는 국내 신문용지 생산업체에서 는 보류도와 탈수성 저하에 따른 생산성 악화가 발생하고 있을 뿐 아니라 제품의 강도 및 인쇄적성 저하라는 문제를 극복하는 것이 매우 중요한 과제로 대두되고 있다. 또 신문용지 생산공정의 수질이 악화됨에 따라서 사용되는 화학첨가제의 효능이 크게 감소하는 문제를 지니고 있다. 적합한 양성전분과 이러한 문제를 종합적으로 해결하기 위한 방안으로 신문용지 생산에 이의 적용기술을 모색하였다. 전기전도도가 4000 $\mu\textrm{s}$/cm인 신문용지 지료를 이용하여 DS 0.03인 저치환 양성 전분의 보류도 증가효과를 평가한 결과 양성전분을 사용하지 않은 경우에 비하여 보류도 증가율이 6 6%로 낮게 나타났으나, DS 0.06인 전분은 보류도 증가율이 21%로 향상효과가 높게 나타났 다. 또 양성전분의 치환도가 증가할수록 인장지수, 내부결합강도, 표면강도 향상 효과도 증 가되는 결과를 얻을 수 있었다. 가교 처리를 실시한 치환도 0.08 및 0.1의 습식양성전분의 경우에는 미세분 보류도, 여수도, 탁도 등에 큰 효과를 나타내지 않았다. 경우 보류도가 각 확인하였으며,이 건식방법으로 제조된 치환도 0.08 빛 0.15인 양성 전분을 0.5% 첨가할 각 16%, 21% 증가되어 적은 첨가량에서도 보류향상 효과가 높다는 것을 러한 효과는 여수도 및 양이온 요구량 측정을 통하여 재확인되었다. 저치환 양성전분의 성능을 개선시키기 위한 방법으로서 비이온성 천연고분자를 활용하 는 방안을 검토한 결과 비이온성 천연고분자를 병용함에 따라 보류도 증가율이 탁월하게 개 선되었으며, 인장지수, 내부결합강도, 표면강도 등에서도 같은 효과를 얻을 수 있었다.

  • PDF

Veriation of Pore Structure of High Strength Concrete Including Silica Fume Exposed to High Temperature (고온에 노출된 실리카퓸 혼입 고강도 콘크리트의 공극구조 변화)

  • Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.597-604
    • /
    • 2004
  • This work involves quantitatively investigating the correlation between reductions in strength and variations in pore structure under high temperature that can be utilized as estimation for predicting the inner temperature of member damaged by fire. The experimental results were remarkedly affected by micro-filling effect of silica fume and the different water-binder ratios. The increase of the exposure temperature caused the increase of porosity, which resulted from the reason that evaporable water in gel pore or capillary pores as well as chemically bound water was eliminated from hardened cement paste due to the dehydration of C-S-H and $Ca(OH)_2$. Thermal shrinkage of hardened cement paste gives rise to micro-crack, which cause the increase of porosity. Based on the experimental result that the increase of porosity is in charge of exposure temperature, how porosity is distributed can predict temperature-time history and assess the performance of concrete damaged by fire.

EFFECT OF CAVITY DISINFECTANT ON THE BOND STRENGTH AND MICROLEAKAGE OF DENTIN BONDING AGENTS (와동 세척제가 상아질 결합제의 결합에 미치는 영향)

  • Song, Seung-Ho;Lee, Ju-Hyun;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.4
    • /
    • pp.595-603
    • /
    • 2005
  • Incomplete removal of bacteria contaminated dentin or enamel associated with caries is a potential problem in restorative dentistry Secondary or residual caries, pulpal inflammation and hypersensitivity may result from bacteria left after the initial preparation, especially if an adequate seal against microleakage is not obtained. A possible solution to eliminate residual bacteria left in a cavity preparation would be to treat the cavity with cavity disinfectant wash. But a potential problem with using a cavity disinfectant with dentin bonding agents could be their interference with the ability of the resin to bond to the tooth micromechanically. The purpose of this study was to evaluate the effect of 2% chlorhexidine containing cavity disinfectant ($Consepsis^{(R)}$) on shear bond strength and microleakage of dentin bonding agents, $Adper ^{TM}$ $Scotchbond^{TM}$ Multi-Purpose, $Adper^{TM}$ Single Bond and $Adper^{TM}\;Prompt^{TM}\; L-Pop^{TM}$ Sixty and sixty sound human third molar teeth, respectively, were used for shear bond strength and microleakage test. For experimental group, cavity disinfectant was applied before dentin bonding agents, and was not applied for the control group. The result from the this study can be summarized as follows ; 1. Use of 2% chlorhexidine containing cavity disinfectant($Consepsis^{(R)}$) does not significantly affect the shear bond strength of dentin bonding agents. 2. Use of 2% chlorhexidine containing cavity disinfectant($Consepsis^{(R)}$) does not significantly affect the microleakage of dentin bonding agents.

  • PDF

폴리머시멘트고화체에서의 폴라머첨가가 압축강도에 미치는 영향

  • Gwak, Gyeong-Gil;Kim, Tae-Guk;Ji, Yeong-Yong;Kim, Dong-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2010.05a
    • /
    • pp.115-116
    • /
    • 2010
  • 방사성농축폐액처리를 위한 Polymer-Modified-portlandcement 고화체는 Polymer 및 시멘트, 물을 혼합매질로 제조되며 농축폐액처리를 위해 Emulsion Polymer를 사용하였으며 PMC 고화체의 물성을 평가하기위한 고화체의 제조에서 이들 매질의 최적혼합비를 찾기 위해 Polymer 및 물, 시멘트의 혼합비를 1/1/2,1/2/4,1/3/9 등 혼합비에 따른 시편 및 Polymer 첨가량의 증가에 따라 함유비를 달리하는 시편을 제조하여 경화시간별 압축강도를 측정하였으며 매질의 최적혼합비 및 폴리머의 투입비를 구하고자하였다. 특성평가시험을 위한 시편으로는 직경 50, 높이 100mm(L/D=2) 인시편을 제조하여 압축강도를 측정하였으며 폴리머와 시멘트의 결합상태를 확인하기위해 SEM사진을 통한 미세구조를 관찰하였으며 시험결과 P/W/C의비가 1/3/9인 혼합비시편의 압축강도가 $343.36Kg_f/cm^2$로 가장 높았으며 폴리머의 함유량을 달리한 시험에서는 7%폴리머 함유시편은 $397.24Kg_f/cm^2$, 20% 폴리머함유시편은 $175.36Kg_f/cm^2$으로 폴리머의 함유량이 7~15% 이내의 폴리머함유고화체가 적합한 것으로 판단되었으며 폴리머의 투입양이 증가할수록 압축강도가 감소하였으며 경화시간도 최소4주이상 되어야하는 것으로 판단되었다.

  • PDF

A Study on Tungsten Paste for Metallization and Cofiring of an Alumina Green Sheet (Alumina Green Sheet의 동시소성용 텅스텐 페이스트 제조 및 금속 접합에 관한 연구)

  • 박경리
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.3 no.2
    • /
    • pp.39-50
    • /
    • 1996
  • 본 연구에선 주어진 조성의 알루미나 green sheet에 대하여 텅스텐의 입경 및 산화 물의 조성을 변화시키므로써 수축률을 제어하여 camber를최소화하여 결합강도를 최대로 하 는 텅스텐 페스트조성을 찾아내는 것을 목적으로 하였다. 본 실험에서 사용한 텅스텐 분말 의 입경은 0.35$\mu$m, 0.6$\mu$m, 0.72$\mu$m, $1.5\mu$m, 1.9$\mu$m, 3.2$\mu$m이며 frit는 Al2O3, MgO, SiO2 와 Al2O3, CaO, SiO2를 사용하여 각각의 조성에 따라 함량을 변화시키며 실험하였다. 소성 은 154$0^{\circ}C$로 습윤 수소분위기에서 시행하였으며 사용된 알루미나 green sheet의 알루미나 중심 입경은 2.8$\mu$m이었다. 분석은 주사전자 현미경으로 미세구조를 관찰하였고 EPMA Line Profile로 원소 분석을 하였으며 잔류응력을 측정하기 위하여 XRD분석을 하였다. Frit 을 함유하지 않은 경우 텅스텐 분말의 입경이 1.9$\mu$mdlfEo 최대 접합 강도를 나타내었다. Frit을 함유한 경우 Mgo계 frit조성에서는 MgO/Al2O3/SiO3=1/1/1일 때 CaO계 frot 조성에 서는 CaO/Al2O3/SiO2=1/2/1일 때 최대 접합 강도를 나타내었다. Frit 함량을 변화시킨 경우 MgO계는 10wt%함유하였을 때 CaO 계는 5wt%함유하였을 때 최대 접합강도를 나타내었 다. Frit 함량을 변화시킨 경우 MgO계는 10wt%함유하였을 때, CaOr계는 5wt%함유하였을 때 최대 접합강도를 나타내었다.

Effects of dye-guidance brushing etching technique on the performance of pits and fissures sealant (Dye-guidance와 brushing을 통한 산부식 방법이 치면열구전색술의 수복의 질에 미치는 영향)

  • Hung, Phan Ai;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.106-121
    • /
    • 2007
  • The purpose of this study was to examine the effects of suggested etching method on the performance of pits and fissures sealant. In the first part, seventy extracted sound human permanent third molars and premolars were used. The teeth were randomly divided and performed in three different groups as follows : conventional etching, enameloplasty, and testing group. Non-pumicing, dye-guidance vigorous brushing-start etching technique was applied on the occlusal of testing group. Then the pit and fissure sealant was applied on all of the specimens. After the thermocycling and immersing in 1% methylene blue, the resin embedded sections were made. The microleakage data on the section were then recorded under the stereoscope and statistic analysis was done. Additional experiments were also performed : direct fissure surface etched pattern experiment, replica study, and micro-shear bond strength testing observation. The second part included two groups. A paired study was designed to evaluate the influence the environment has on the performance of the sealant. After etching, half of each occlusal surface received one of the two following treatments in succession: sealing in laboratory and intraoral condition (group 1), sealing in intraoral condition with and without a single-bonding agent (group 2). The results of present study can be summarized as follows: - The microleakage of testing group was significant different with conventional method (P<.05) and was not different with the enameloplasty group (P>.05). - The quality and quantity of etched enamel were improved. - Microshear bond strength of testing group was higher than control group (p<.05). - The environmental condition was influenced on the performance of the sealant. The testing etching method modified the capacity of the etching agent to penetrate into the pits and fissures, and simultaneous enhance their efficiency in vitro condition.

  • PDF

Effect of Ethanol Addition on Efficacy of Dental Adhesive (에탄올의 첨가가 치과용 접착제의 효율에 미치는 영향)

  • Min, Jeong-Bum;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.161-174
    • /
    • 2011
  • The purpose of this study was to evaluate the effect of ethanol addition on efficacy of two-step total-etch adhesive under over-wet condition by measurement of remaining volatile part (RVP), microtensile bond strength (${\mu}TBS$), and degree of conversion (DC). Two-step total-etch adhesive, Optibond Solo Plus (Kerr, Orange, USA), was used. Experimental groups were divided into 8 groups: Group 1 (only 10 ${\mu}l$ adhesive), Group 2 (mixture of 3 ${\mu}l$ distilled water and 10 ${\mu}l$ adhesive), From Group 3 to Group 8 (mixture of 3 ${\mu}l$ distilled water, 10 ${\mu}l$ adhesive, and ethanol added in 1 ${\mu}l$ increment from 1 ${\mu}l$ to 6 ${\mu}l$). The mixtures were placed on slide glass and evaporated for 10 s, 30 s, and 60 s by air-drying. The weight of RVP was measured by precision weight. Same procedures were performed for ${\mu}TBS$ test and measurement of DC. The condition of mixed solution was observed under light microscope. For RVP weight, the weights of experimental groups except for group 1 decreased with the increase of air-drying time (p<0.05). The DC increased with the increase of air-drying time in only group 5 and 6 (p<0.05). The ${\mu}TBS$ increased with the increase of air-drying time in group only 5, 6, and 7 (p<0.05). The phase separation was examined and water blisters were diminished with the increase of air-drying time in group 5, 6, 7, and 8. Within the limits of this study, ethanol additionally applied to adhesive decreased RVP and increased DC and ${\mu}TBS$ under over-wet condition. It was shown that the addition of ethanol to two-step total-etch adhesive under over-wet condition would remove water and increase the efficacy of adhesive.