• Title/Summary/Keyword: 미생물 제거율

Search Result 332, Processing Time 0.031 seconds

A Study on the TCE/PCE Removal Using Biofiltration and the Microbial Communities Variation Using DGGE Method (생물 여과를 이용한 TCE/PCE제거 및 DGGE법을 이용한 관련미생물 군집변화에 관한 연구)

  • Kim, Eung-In;Park, Ok-Hyun;Jung, In-Gyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2008
  • The removals of TCE and PCE vapor with or without a supply of toluene as a primary substrate were compared in a biofiltration process, and the variations of microbial communities associated with the removal were also investigated. As a result of investigations on the removals of TCE/PCE in a biofilter B within which TCE/PCE-acclimated sludge was attached on the surface of media without a supply of primary substrate, and those in another biofilter A where toluene-acclimated sludge was attached with a supply of toluene as a primary substrate, followings were found: (i) parts of microbes responsible to the decomposition of toluene vapor participate in the removal of chlorinated VOCs such as TCE and PCE, and (ii) effective biological removals of TCE and PCE vapor do not necessarily need cometabolism. Sequencing of 16S rDNA obtained from the band profile of DGGE (Denaturating Gradient Gel Electrophoresis), it was confirmed that: (i) uncultured alpha proteobacterium, uncultured Desulfitobacterium, uncultured Rhodobacteraceae bacterium, Cupriavidus necator, and Pseudomonas putida were found to be toluene-decomposing microbes, (ii) alpha proteobacterium HTCC396 is a TCE-removing microbe, (iii) Desulfitobacterium sp. is a PCE-decomposing microbe, and (iv) particularly, uncultured Desulfitobacterium sp. is probably a microbe decomposable not only toluene but also various chlorinated VOC vapor including TCE and PCE.

The Effect of Microorganisms, Nutrients, and Surfactants on the Bioremediation of Oil-Contaminated Soil (유류오염토양의 정화에서 미생물, 영양제 및 계면활성제의 영향)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • This study was focused on the investigation of the characteristics of TPH and BTEX removal in oil-contaminated sandy soil and fine soil with injection of microorganisms, nutrients, and surfactants. As the result of the experiments maintained moisture contents by 10${\sim}$20%, the TPH removal efficiency in oil-contaminated sandy soil was the highest in C-1 (microorganisms+nutrients), and the efficiency in C-2 (microorganisms+nutrients+surfactants) was higher than the efficiency in C-0(microorganisms). In 81 days, TPH removal efficiency in case of C-0, C-1 and C-2 showed 51%, 83%, 63% respectively. The results of D group with fine soil showed similar trends as C group, but the TPH removal efficiency of D group was lower than that of C group. Those of both C and D group were the highest in 1 group (microganisms+nutrients). The pH of fine soil was some lower than that of sandy soil or was similar to sandy soil. In 14 days, BTEX removal efficiency in case of C-0, C-1, C-2, D-0, D-1 and D-2 showed 99.8%, 99.4%, 96.0%, 99.5%, 99.2%, 96.3% respectively. Those of both C and D group were the highest in 0 group (microganisms).

The Treatment of Concentrated Organic Alcoholic Distillery Wastewater by the Fluidized-Bed Biofilm Reactor (생물막 유동층 반응기에 의한 주정공장의 고농도 유기성 폐수처리)

  • 김동석;장희재
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.345-350
    • /
    • 1991
  • The purpose of this study is to investigate biomass characteristics and organic removal efficiency by changing superficial upflow velocity and organic loading rate in treating alcoholic distillery wastewater. Since the biomass concentration and the thickness of biofilm are very sensitive to superficial upflow velocity, a high concentration of biomass could be achieved by decreasing superficial upflow velocity that lowered the organic removal efficiency. Therefore, superficial upflow velocity should be controlled as to give optimum conditions and removal efficiency. Generally, activated sludge system shows 70% COD removal efficiency at$1.5kgCOD/m^3{\cdot}day$, but the fluidized-bed biofllm reactor shows 80% COD removal efficiency even at 6kgCOD/$m^2{\cdot}day$.

  • PDF

Microbial Adaptation in a Nitrate Removal Column Reactor Using Sulfur-Based Autotrophic Denitrification (질산성 질소 제거를 위한 독립영양 황탈질 칼럼에서의 미생물 적응에 관한 연구)

  • Shin, Do-Yun;Moon, Hee-Sun;Kim, Jae-Young;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.38-44
    • /
    • 2006
  • Two sulfur-based column reactors inoculated with a bacterial consortium containing autotrophic denitrifiers were operated for 100 and 500 days, respectively and nitrate removal efficiency and the adaptation of microbial communities in the columns were monitored with column depths and time. For better understanding the adaptation phenomenon, molecular techniques including 16S rDNA sequencing and DGGE analysis were employed. Although both columns showed about 99% of nitrate removal efficiency heterotrophic denitrifiers such as Cenibacterium arsenioxidans and Geothrix fermentans were found to a significant portion at the initial stage of the 100-day reactor operation. However, as operation time increased, an autotrophic denitrifier Thiobacillus denitrificans became a dominant bacterial species throughout the column. A similar trend was also observed in the 500-day column. In addition, nitrate removal efficiencies were different with column depths and thus bacterial species with different metabolic activities were found at the corresponding depths. Especially, T. denitrificans was successfully adapted and colonized at the bottom parts of the columns where most nitrate was reduced.

Development of Biofilter System to Ammonia Removal exhausted from Livestock Facilities (축사내 암모니아 제거를 위한 바이오필터 시스템 개발)

  • 조성인;김명락;여운영
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.383-388
    • /
    • 2002
  • 본 연구에서 구성한 바이오필터 시스템은 암모니아 가스를 대상으로 여러 조건에서 성능을 구명하였으며, 필터 설계시 중요 인자인 송풍량, 온도, 함수율, 압력강하, 체류시간들간의 관계를 구명하였다. 필터 내부의 온도 변화는 체류시간 및 압력손실에 거의 영향을 주지 않았으며, 함수율의 변화가 체류시간과 압력손실에 미치는 영향은 함수율 값이 증가할수록 체류시간은 감소했으며 반대로 압력손실은 증가하는 결과를 보였다. 이는 필터 내부의 공극률 변화로 생긴 결과라 판단된다. 송풍량은 바이오필터 효율에 절대적으로 영향을 미치며 송풍량이 증가할수록 체류시간은 감소하며 초기 제거율도 떨어진다. 미생물의 투입 여부에 따른 제거율은 미생물 접종을 하지 않은 경우 초기 흡착에 의한 영향으로 제거율이 높다가 시간이 지남에 따라 차츰 낮아져 90% 이하로 떨어지는 경향을 보였고, 균주를 접종한 경우에 있어서는 시운전 기간 동안 거의 100% 가까운 제거 성능을 보였다. 본 연구는 실험실에서 암모니아 가스만을 대상을 하여 실험하였다. 따라서 실제 축사에서 발생하는 다양한 성분의 악취와 농도에 대한 성능 검증과 개선에 대한 연구가 보다 장기간에 걸쳐 이루어져야 할 것이다. 또한 소요되는 에너지와 운전비용의 절감 등의 유지관리, 바이오필터와 타 방식과의 조합, 그리고 다양한 전처리 방식의 개발 등 여러 측면에서 바이오필터 성능 개선에 대한 연구가 병행되어야 할 것으로 판단된다.

  • PDF

Development of Advanced Wastewater Treatment System using Phototrophic Purple Non-sulfur Bacteria. (광합성 박테리아를 이용한 폐수의 고도처리시스템개발)

  • Lee, Sang-Sub;Joo, Hyun-Jong;Lee, Seok-Chan;Jang, Man;Lee, Taek-Gyeon;Sim, Ho-Jae;Shin, Eung-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Twenty nine strains of photosynthetic purple nonsulfur bacteria were isolated from Kyonggi area in Korea. The isolated strains were identified as Rhodopseudomonas blastica, Rhodocyclus gelatinosus, Rhodocyclus tenuis, and Rhodopseudomonas rutila. The enhanced nutrients removal system for wastewater using phototrophic purple non-sulfur bacteria was developed. Experiments were performed into two Phases and the results were compared: the synthetic wastewater was tested for the removal efficiency of nutrients and organics during Phase 1 and the real wastewater during Phase2. Results showed that 97∼99% of organics were removed during Phase 1 and 96∼99% during Phase 2. Nutrients (nitrogen and phosphorus) were also removed efficiently: 85∼91% removal of T-N and 78∼92% removal of T-P were achieved for Phase 1, and 76∼89% removal of T-N and 73∼88% removal of T-P for Phase 2.

Microbial Degradation of Aromatic Compounds in Industrial Wastewater (방향족화합물이 함유된 폐수의 생물학적 처리)

  • 박춘호;김용기;오평수
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.631-636
    • /
    • 1991
  • The bacteria which can biodegrade aromatic compounds were screened from soil and wastewater. The isolated Pseudomonas sp. HC107 had high removal rate of COD and phenol. And also this strain grew on m-cresol, salicylate, toluene, 2, 4-D and benzene. When the strain culture (2 ml/day) was treated on continuous reactor at mixed wastewater from chemical, pharmaceutical and dye industry, the treatment rate of COD, BOD and phenol was to be about 92.5%, 95.3% and 93.5%, respectively.

  • PDF

The Influence of Ammonium-Nitrogen on Anaerobic Microorganisms in Swine Wastewater by Batch-Fermentation. (혐기성 회분식 배양에서 양돈폐수의 NH$_4$-Nitrogen이 혐기성 미생물에 미치는 영향)

  • 김연옥
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.173-178
    • /
    • 1998
  • This study presents the influence of ammonium-nitrogen on microorganisms in swine wastewater. For the anaerobic batch fermentation, two different methods were used. One is the dilution of wastewater with water. The other method is the elimination of ammonium-nitrogen from the wastewater. By addition of MgO into wastewater, non-soluble crystall was formed under alkaline condition as MgNH$_4$PO$_4$6$H_2O$ (MAP). The master culture was adapted in swine wastewater for more than 3 months, in water-dilution method, the dilution of wastewater with 25% water gave us the best result in efficiency of COD removal. Two hundred hours later MAP-treated wastewater showed the efficiency of the COD removal more than 80%. Under same condition obtained none MAP-treated wastewater about 50%. MAP treatment carried out the very effective anaerobic digestion with swine wastewater. The important result in this study is that the low ratio of C:N influenced on anaerobic microorganisms more than high concentration of ammonium nitrogen in swine wastewater. The struvite for the crystallforming has no toxic effect on methanogenic bacteria.

  • PDF

Removal of VOCs and H2S from Waste Gas with Biotrickling Filter (생물살수여과법을 이용한 공기중 VOC 및 H2S 제거)

  • Kim, Kyoung-Ok;Kim, Yong-Je;Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.519-525
    • /
    • 2008
  • Biodegradation of toluene, styrene and hydrogen sulfide as model compounds of volatile organic compounds and odor from waste gas was investigated experimentally in a biotrickling filter. This study focussed on the description of experimental results with regard to operating conditions. The effect of varying $H_2S$ load rate and inlet concentration was investigated under autotropic and mixotropic environmental conditions. The $H_2S$ removal efficiencies of greater than 99% were achieved at $H_2S$ loads below $10g/m^3{\cdot}hr$ for each environment. It was observed that the maximum elimination capacity of mixotrophic filter was achieved a little greater than the one of autotrophic filter. The biofiltration of toluene and styrene in trickling bed was examined under different gas flow rates, load rates, and inlet concentrations. Below $40g/m^3{\cdot}hr$ of toluene loading, the elimination capacity and loading were identical and it was completely destroyed. In high loading of toluene, the biotrickling filter was operated at its maximum elimination capacity. In the inlet concentration of 0.2, 0.5, and $1.0g/m^3$, the maximum elimination capacity of toluene showed 40, 45, and $60g/m^3{\cdot}hr$, respectively. After a short adaptation period, it was demonstrated that the results of styrene in originally toluene adapted bioreactor was similar with the ones of toluene. However, the performance of filer for styrene is generally a little lower than for toluene. The operating conditions (including liquid flow rate etc.) allowing the highest removal efficiency should be determined experimentally for each specific case.

BNR 슬러지 유입비율에 따른 SBR의 초기 start-up과정의 영양염류제거 특성

  • Jeong, No-Seong;Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.339-345
    • /
    • 2007
  • 이번 연구에서는 pH 조작이 어려운 소규모 하수 처리장에서의 BNR 슬러지의 접종으로 인한 SBR start-up시 영양 염류 제거 특성 및 변화를 관찰 하였다. 1) 글루코즈를 탄소원으로 사용한 유기물 제거에 있어서 모두 85%이상의 높은 제거 효율을 보였으나 BNR 슬러지 접종 비율이나 유무에 따른 SBR의 유기물 제거에 미치는 영향은 미비한 것으로 나타났다. 2) 유입비율에 따라 암모니아 제거 효율은 BNR 슬러지 첨가 유무에 따라 바뀌었으며, 비율에 상관없이 첨가된 반응조는 7일 이내 $82{\sim}98%$에 달하는 제거율을 보였다. 3) 인 제거효율에 있어서는 유입비율에 따라 인 제거 효율이 증가하였으며, 첨가와 미첨가의 차이는 25%이상의 인 방출량 차이를 나타내었다. 4) 첨가한 BNR 슬러지의 비율이 전체의 40%이상일 때는 50%일 때와 큰 차이를 보이지 못했다. 5) FISH를 통하여 미생물 군집을 확인하였고 각 미생물들 간의 상대적인 비율과 heterotroph의 급격한 증식을 확인할 수 있었다. 6) pH, DO, ORP graph를 통한 Reactor의 실시간 조정 가능성을 볼 수 있었다. 7) BNR 슬러지를 접종하지 않을 경우, PAOs와 질산화 미생물의 성장이 더뎌 영양염류 제거가 어려웠다.

  • PDF