• Title/Summary/Keyword: 미생물 성장 속도

Search Result 243, Processing Time 0.025 seconds

The Strategy for the Environmental Education through the Practical Arts(TechnologyㆍHome economics) Subject in a viewpoint of the Clothing & Textiles resources (의생활자원 관점에서의 실과(기술ㆍ가정) 환경교육방안에 관한 연구)

  • Chung Mee-Kyung
    • Journal of Korean Home Economics Education Association
    • /
    • v.16 no.3
    • /
    • pp.131-146
    • /
    • 2004
  • The Purpose of this study is to suggest strategies for environmental education through the Practical Arts(TechnologyㆍHome economics) Subject in a viewpoint of the clothing & textiles resources to resolve problems in the clothing life area. For this, this study was carried out through review of literature which is related with the consumption, the environmental problems, the environmental policies, and regulations of the government and new environmental technologies, of clothing & textiles industries and environmental education. The major findings of the study were as follows; 1) The environmental education system model in a viewpoint of the Clothing & Textiles resources was developed. This model system is consisted with interactions on school, government, industry, home and non-government organizations. Thus, the fact that Practical Arts(TechnologyㆍHome economics) Subject were the most effective subject to teaching the environmental education viewpoint of the Clothing & Textiles resources was confirmed. 2) The standards were analysed out to analyse the contents in the clothing area of the Practical Arts(TechnologyㆍHome economics) Subject. It were consist of 4 factors and 12 elements under the factors: Awareness of clothing & textile resources(clothing consumption, production of clothing & textile and environmental problems). Planning and buying of clothing(planning, buying), Management of clothing(understand of textile. human body & environment, laundering and Environmental pollution, arrangement & conservation) Recycling & exhaust of clothing(contribution, redesign, recycling, exhaust) 3) Analysing the current Practical Arts (TechnologyㆍHome economics) subject from the Environmental education in the clothing section, the environmental education related with clothing were taught the most in the middle school course, and environmental contents were concentrated in the recycling factors. but not so much on other factors. 4) After analysing the Practical Arts (TechnologyㆍHome economics) subject, the strategies were suggested for reinforcing the environmental education in the clothing of the Practical Arts(TechnologyㆍHome economics) subject.

  • PDF

Studies on Natural Plant Extracts for Methane Reduction in Ruminants (반추동물의 메탄감소를 위한 천연식물 추출물에 관한 연구)

  • Lee, Shin-Ja;Eom, Jun-Sik;Lee, Su-Kyoung;Lee, Il-Dong;Kim, Hyun-Sang;Kang, Han-Beyol;Lee, Sung-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.901-916
    • /
    • 2017
  • This study was conducted to evaluate natural plant extracts for methane gas reduction in ruminants. Rumen fluid was collected from cannulated Hanwoo cow ($450{\pm}30kg$) consuming 400 g/kg concentrate and 600 g/kg timothy. The 15 ml of mixture comparing McDougall's buffer and rumen fluid in the ratio 2 to 1, was dispensed anaerobically into 50 ml serum bottles. Rumen fluid contents were collected and in vitro fermentation prepared control (timothy, 300 mg), ginseng, balloon flower, yucca plant, camellia, tea plant and ogapi extracts were added at the level of 5% against 300 mg of timothy as a substrate (v/w) and incubated for 3, 6, 9, 12, 24, 48, and 72 h. In vitro pH values range 6.55~7.41, this range include rumen titration. The dry matter digestibility was not differ between all treatments and control. Total gas emission was significantly higher (p<0.05) in ginseng and balloon flower treatments on 24 h than in control. Carbon dioxide emission was not differ all treatments on 9 h than in control and significantly higher (p<0.05) yucca plant, camellia and tea plant treatments on 12 h than control. Methane emission was not differ all treatments on 6 h than in control. The rumen microbial growth rate was significantly higher (p<0.05) in ginseng, balloon flower on 12 h and significantly higher (p<0.05) in ginseng, yucca plant, tea plant and ogapi treatments on 24 h than in control. Total VFA was significantly higher (p<0.05) in tea plant and ogapi treatments on 12 h than in control and significantly higher (p<0.05) in ginseng, balloon flower treatments on 48 h than in control. Acetic acid was significantly lower (p<0.05) in ginseng and balloon flower treatments on 24 h than in control. Propionic acid was significantly higher (p<0.05) in ginseng and balloon flower treatments on 48 h than in control. As a results, sixth natural plant extracts had no significant effect dry matter digestibility and negative on rumen fermentation, but not effect methane reduction.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.