• Title/Summary/Keyword: 미분계수

Search Result 271, Processing Time 0.024 seconds

Characteristics of Strength and Fracture Toughness of Recycled Aggregate Concrete (재생골재 콘크리트의 강도 및 파괴특성 실험)

  • Kim, Jin-Cheol;Yang, Sung-Chul;Cho, Yoon-Ho;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.37-45
    • /
    • 2004
  • The characteristics of concrete strength and fracture parameters of recycled aggregate concrete were investigated to apply to the concrete pavements. As the results, the early strength of recycled aggregate concrete showed to be lower than that of natural coarse aggregate concrete, whereas strength at 28 days showed to be similar. Young's modulus of recycled aggregate concrete was lower than that of natural coarse aggregate concrete due to the difference of aggregate strength. And recycled aggregate concrete contained with ground granulated blast furnace slag seemed to have an effect of strength increasing. The critical stress intensity factor of recycled aggregate concrete at the early age was increased, and converged to be similar, compared to natural aggregate concrete at later age. The reliability of two-parameter fracture model was identified by the good correlation between the theoretical value computed by P-CMOD relationship and experimental results for Young's modulus and tensile strength.

  • PDF

Theoretical Analysis of Linear Maneuvering Coefficients with Water Depth Effect (수심의 영향을 고려한 선형(線形) 조종성 계수의 이론적 해석)

  • In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.47-58
    • /
    • 1994
  • Theoretical calculations are carried out for the estimation of linear maneuvering coefficients of a ship moving in shallow water region. Hydrodynamic forces and moments acting on a maneuvering ship are modelled based on a slender body theory, from which integro-differential equation for the unknown inner stream velocity is derived. Numerical algorithms fur solving this equation are described in detail. By considering water depth effects in the mathematical model, variations of maneuvering coefficients with water depth are studied. Programs are developed according to this method and calculations are done for Mariner, Series 60 and Wigley hull forms. For the verification of the programs, calculated results are compared with some analytic solutions and with published experimental results, which show good agreements in spite of many assumptions included in the mathematical model. It is expected that this method can be used as a preliminary tool for the estimation of maneuverability coefficients of a ship in shallow water region at its initial design stage.

  • PDF

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.

A Mathematical Model Proposed for the Prediction of the Fate of Priority Organic Pollutants Spilled in Streams: Dynamic Simulations and Sensitivity Analysis (하천에 유입된 유독성 유기오염물의 농도분포를 예측하기 위한 수학적 모형의 개발: Dynamic simulations 및 민감도 분석)

  • Ko, Kwang Baik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.265-274
    • /
    • 1992
  • A mathematical model was proposed to predict the fate of a priority organic pollutant, anthracene, accidently spilled into a stream. The model consists of 6 differential equations with 5 input variables and 9 rate constants. Volatilization, biodegradation, adsorption/desorption, photodegradation as well as the convective inputs and outputs are included in the model. As a result of a series of dynamic simulations and sensitivity analyses under the given conditions, the concentrations of the organic chemical could be predicted within a detection limit in the stream. It was also suggested that the rate constant for diffusion/transport and adsorption rate constant are the most influential ones for predicting the chemical conentrations in dissolved and particulate phase. The model proposed appears to be a useful tool for assessing chemical spills.

  • PDF

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

Durability Performance Evaluations on Resistance to Chloride Attack for Concrete Using LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 콘크리트의 염해내구성 평가)

  • Kim, Seong-Kyum;Lee, Kwang-Woon;Song, Jae-Ho;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2018
  • In this study, we evaluated the feasibility and performance of LCD waste glass as a replacement for cement by using LCD waste glass powder which is generated from manufacturing process due to development of LCD industry. Experiments were carried out by replacing 10% and 20% cement of LCD waste glass with particle size of $12{\mu}m$ of LCD waste glass with OPC and particle size of $5{\mu}m$, respectively. Through experiments, basic properties, mechanical properties and durability of concrete were evaluated. Experimental results show that the compressive strength is high at 10% replacement ratio compared to 20%. The lower the particle size, the higher the strength. The durability test evaluated the chloride penetration performance through the chloride ion diffusion coefficient. The higher the substitution rate and the smaller the particle size, the lower the chloride ion diffusion coefficient and the better the OPC than the all substitution rate. As a result, LCD waste glass concrete with low granularity and proper replacement ratio is considered to be advantageous for durability under salt environment.

Image Restoration Algorithm using Backward Diffusion Equation (역확산 방정식을 이용한 영상복원 알고리즘)

  • 이석호;최은철;강문기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In this paper, the image restoration process is interpreted as a backward diffusion process and the restored image is given as the solution of the backward diffusion equation (BDF). The ill-posedness of the backward diffusion if subdued by manipulating the exponentially increasing coefficients of the eigenfunctions. In manipulating the coefficients the spectral characteristics of an image is taken into account. The proposed scheme uses an exponentially decreasing function of the coefficients of the eigenfunctions beyond a certain threshold which is optimal with respect to the observation accuracy. The use of decreasing functions also improves the result compared with the constant bounded algorithm since it can include more low frequency components.

Analysis Technique for Chloride Penetration in High Performance Concrete Behavior Considering Time-Dependent Accelerated Chloride Diffusivity (촉진염화물 확산계수의 시간의존성을 고려한 고성능 콘크리트의 염화물 침투 해석기법)

  • Kwon, Seung-Jun;Park, Sun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.145-153
    • /
    • 2013
  • Recently, accelerated chloride diffusion coefficients are used for an evaluation of chloride behavior. Similar as apparent diffusion coefficients, accelerated diffusion coefficients decrease with time. In this study, decrease in diffusion coefficient with time is simulated with porosity. Utilizing DUCOM-program, porosities from 15 mix proportions are obtained and diffusion coefficients are modelled with regression analysis of porosity for 270 days. Considering non-linear binding capacity which means the relation between free and bound chloride ion, chloride behavior in high performance concrete is evaluated. Through utilizing the previous test results for concrete under chlorides for 180 days, the applicability of the proposed technique is verified. The proposed technique is evaluated to reasonably predict the chloride behavior in concrete with various w/c (water to cement) ratios and mineral admixtures (GGBFS and FA). It is also shown that decrease in chloride diffusion should be considered for chloride prediction in concrete with mineral admixture since it has very clear decrease in diffusivity with time.

Prediction of the Variation of Tidal Characteristics due to the Construction of Seadike Using Finite Element Model (유한요소모형을 이용한 방조제 건설 전후의 조성특성변화 예측)

  • Park Yeong-wook;Koo Yo-han;Kim Jin-sik;Kwun Soon-kuk
    • KCID journal
    • /
    • v.4 no.1
    • /
    • pp.22-33
    • /
    • 1997
  • Seadike construction in order to develope the tidal land is used to significantly affect the water circulation system not only resulting in changes of coastal geometry but causing environmental problems. Therefore it is necessary that resultant effects of

  • PDF