• Title/Summary/Keyword: 미래 예측 모델링

Search Result 103, Processing Time 0.032 seconds

Predictive Modeling for the Data having Marcov property (마코프성분을 갖는 데이터셋의 예측모델링)

  • 김선철;서성보;이준욱;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.172-174
    • /
    • 2000
  • 기업과 산업등 여러분야에 적용하기 위하여 인공지능, 통계학, 데이터베이스등의 각 분야에서 활발히 연구되고 있는 데이터마이닝은 알 수 없는 미래에 대한 예측이 가능하다는 장점을 갖기 때문에 더욱 가치가 있다. 데이터셋을 설명하기 위한 설명모델링과 예측을 하기 위한 예측모델링의 두 가지 범주로 나뉘어 발전되어왔으나, 데이터셋을 설명하기 위한 분석보다는 미래를 예측하기 위한 분석의 중요성이 점점 증가되고 있다. 이 논문에서는 마코프 성분을 갖는 과거의 이력 데이터를 기반으로 일정한 시점 또는 일정 기간동안의 변화량을 예측할 수 있는 예측모델링 방법을 제시한다.

  • PDF

Prediction of Marine Accident Frequency Using Markov Chain Process (마코프 체인 프로세스를 적용한 해양사고 발생 예측)

  • Jang, Eun-Jin;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.266-266
    • /
    • 2019
  • Marine accidents are increasing year by year, and various accidents occur such as engine failure, collision, stranding, and fire. These marine accidents present a risk of large casualties. It is important to prevent accidents beforehand. In this study, we propose a modeling to predict the occurrence of marine accidents by applying the Markov Chain Process that can predict the future based on past data. Applying the proposed modeling, the probability of future marine accidents was calculated and compared with the actual frequency. Through this, a probabilistic model was proposed to prepare a prediction system for marine accidents, and it is expected to contribute to predicting various marine accidents.

  • PDF

A Study of the Probability of Prediction to Crime according to Time Status Change (시간 상태 변화를 적용한 범죄 발생 예측에 관한 연구)

  • Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.147-156
    • /
    • 2013
  • Each field of modern society, industrialization and the development of science and technology are rapidly changing. However, as a side effect of rapid social change has caused various problems. Crime of the side effects of rapid social change is a big problem. In this paper, a model for predicting crime and Markov chains applied to the crime, predictive modeling is proposed. Markov chain modeling of the existing one with the overall status of the case determined the probability of predicting the future, but this paper predict the events to increase the probability of occurrence probability of the prediction and the recent state of the entire state was divided by the probability of the prediction. And the whole state and the probability of the prediction and the recent state by applying the average of the prediction probability and the probability of the prediction model were implemented. Data was applied to the incidence of crime. As a result, the entire state applies only when the probability of the prediction than the entire state and the last state is calculated by dividing the probability value. And that means when applied to predict the probability, close to the crime was concluded that prediction.

Long-term runoff prediction of Gyeongan-cheon watershed using statistically forecasted weather information (통계적 기상예측정보를 이용한 경안천 유출량 장기 전망)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.413-413
    • /
    • 2022
  • 본 연구에서는 통계적 방법으로 도출된 장기 기상예측정보를 이용하여 유역에서의 유출량 전망 가능성을 검토하였다. 먼저 한강권역의 월 강수량과 기온에 대해 글로벌 기후지수와의 원격상관성을 기반으로 다중회귀모형 기반의 통계적 예측모형을 구성하여 미래기간(1~12개월)에 대한 월 단위 기상예측정보를 도출하였다. 월 단위로 도출된 강수량과 기온은 통계적 상세화 기법을 통해 한강권역 주요 ASOS 관측소 지점별로 일 단위 강수량과 기온자료로 변환하였으며, 상세화된 일 자료를 유역모형인 SWAT의 입력자료로 활용하여 경안천 유역의 미래기간에 대한 유출량을 도출하였다. 유출량 예측성을 평가하기 위하여 과거기간(2003~2021년)을 대상으로 관측유출량과 예측기상정보로부터 산출된 예측유출량을 비교하였다. 각 월별로 예측된 유출량의 중앙값과 관측값의 적합도를 분석한 결과, PBIAS는 -5.2~-2.7%, RSR은 0.79~0.91, NSE는 0.34~0.38, r은 0.59~0.62로 강수량 및 기온의 예측성에 비해 낮게 나타났다. 전 기간에 대해 월별로 분석한 예측결과에 대한 3분위 확률은 5월, 6월, 7월, 9월, 11월은 평균 42.8%로 예측성이 충분한 것으로 나타났으나, 나머지 월에서의 평균 예측성은 17.3%로 매우 낮게 나타났다. 상세화된 기상정보를 이용하여 유역모델링을 통해 산정한 유출량에 대한 전망 결과는 기상예측결과에 비해 상대적으로 예측성이 낮은 것으로 분석되었다. 이는 관측값 자체에서 나타날 수 있는 불확실성에 기인할 수도 있으며, 유출량에 지배적인 영향을 주는 강수량의 예측성에 대한 문제가 유역 모델링 과정에서 증폭되어 나타나는 문제일 수도 있다. 또한 지점별 일 자료로 상세화되는 과정에서의 불확실성, 우리나라 여름철 유출량 변동성 등 여러 가지 요인이 복합적으로 영향을 주어 나타나는 것으로 생각된다. 향후 다양한 대상유역에 대한 검토와 기상예측모형의 보완, 상세화 과정에서의 불확실성 해소 등을 통해 예측성을 개선할 계획이다.

  • PDF

A study on forest fire prediction modeling (산불 예측 모델링에 관한 연구)

  • Chung, Young-Suk;Park, Jung-Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.199-200
    • /
    • 2012
  • 전 세계적으로 산불로 인한 산림 자원의 손실로 인한 피해는 막대하다. 산불로 인한 인명 및 재산 피해는 증가하는 추세이다. 또한 산불로 인한 산림 자원의 손실은 생태계에 회복되기 힘든 상처를 남긴다. 이런 산불을 분석하고 예방하기 위해 다양한 연구가 진행되고 있으나, 산불의 발생을 예측 할 수 있는 연구는 부족한 실정이다. 본 논문은 미래 예측 연구에 많이 사용되는 마코프 체인을 이용하여 산불을 예측 할 수 있는 산불 예측 모델링을 제안 하고 그 기대 효과에 대해 논의한다.

  • PDF

LMS-Wiener Model for Resources Prediction of Handoff Calls in Multimedia Wireless IP Networks (멀티미디어 무선 IP 망에서 핸드오프 호의 자원예측을 위한 LMS-위너 모델)

  • Lee, Jin-Yi;Lee, Kwang-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.26-33
    • /
    • 2005
  • Exact prediction of resource demands for future calls enhances the efficiency of the limited resource utilization in resource reservation methods for potential calls in wireless IP networks. In this paper, we propose a LMS-Wiener resource(bandwidth) prediction for future handoff calls, and then an the proposed method is compared with an existing Wiener-based method in terms of prediction error through our simulations. In our simulations, we assume that handoff call arrivals follow a non-Poisson process and each handoff call has an non-exponentially distributed channel holdingtime in the cell, considering that handoff call arrival pattern is not Poisson distribution but non-Poisson for long periods of time in wireless picocellular IP networks. Simulation results show that the prediction error in the proposed method converges to the lower value while in an existing method increase as time is passed. Therefore we may conclude that the proposed method improves the efficiency of resource utilization by more exactly predicting resource demands for future handoff calls than an existing method.

Wind field prediction through generative adversarial network (GAN) under tropical cyclones (생성적 적대 신경망 (GAN)을 통한 태풍 바람장 예측)

  • Na, Byoungjoon;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.370-370
    • /
    • 2021
  • 태풍으로 인한 피해를 줄이기 위해 경로, 강도 및 폭풍해일의 사전 예측은 매우 중요하다. 이중, 태풍의 경로와는 달리 강도 및 폭풍해일의 예측에 있어서 바람장은 수치 모델의 초기 입력값으로 요구되기 때문에 정확한 바람장 정보는 필수적이다. 대기 바람장 예측 방법은 크게 해석적 모델링, 라디오존데 측정과 위성 사진을 통한 산출로 구분할 수 있다. Holland의 해석적 모델링은 비교적 적은 입력값이 필요하지만 정확도가 낮고, 라디오존데 측정은 정확도가 높지만 점 측정에 가깝기 때문에 이차원 바람장을 산출하기에 한계가 있다. 위성 사진을 통한 바람장 산출은 위성기술의 고도화로 관측 채널 수 및 시공간 해상도가 크게 증가하고 있기 때문에 다양한 기법들이 개발되고 있다. 본 연구에서는 생성적 적대 신경망 (Generative Adversarial Network, GAN)을 통해 일련의 연속된 과거 적외 채널 위성 사진 흐름의 패턴을 학습시켜 미래 위성 사진을 예측하고, 예측된 연속적인 위성 사진들의 교차상관 (cross-correlation)을 통해 바람장을 산출하였다. GAN을 적용함에 있어 2011년부터 2019년까지 한반도 근방에 접근했던 태풍 중에 4등급 이상인 68개의 태풍의 한 시간 간격으로 촬영된 총 15,683개의 위성 사진을 학습시켜 생성된 이미지들은 실측 위성 사진들과 매우 유사한 것으로 나타났다. 또한, 생성된 이미지들의 교차상관으로 얻어진 바람장 벡터들의 풍향, 풍속, 벡터 일관성 및 수치 모델과의 비교를 통해 각각의 벡터들의 품질 계수를 구하고 정확도가 높은 벡터들만 결과에 포함하였다. 마지막으로 국내 6개의 라디오존데 관측점에서의 실측 벡터와의 비교를 통해 본 연구 결과의 실효성을 검증하였다. 본 연구에서 확장하여, 이와 같이 AI 기법과 이미지 교차상관 기법을 사용하여 얻어진 바람장으로부터 태풍 강도예측에 필요한 요소인 태풍의 눈의 위치, 최고 속도와 태풍 반경을 직접적으로 산출할 수 있고. 이러한 위성 사진을 기반으로 한 바람장은 단순화된 해석적 바람장을 대체하여 폭풍 해일 모델링의 예측 성능 개선에 기여할 것으로 보여진다.

  • PDF

A study on energy consumption predictive modeling using public data (공공 데이터를 이용한 에너지 소비 예측 모델링에 관한 연구)

  • Park, Koo-Rack;Jung, Jin-Young;Ahn, Woo-Young;Chung, Young-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.329-330
    • /
    • 2012
  • 인터넷과 웹의 발전으로 수많은 정보가 발생하고 있으며, 공공기간도 많은 정보를 축적하고 있다. 이에 각 국에서는 공공기간이 보유하는 데이터를 공개하고 있으며 우리나라도 통계청을 중심으로 다양한 데이터를 공개하고 있다. 그러나 공개된 자료의 활용도가 낮은 편이다. 본 논문에서는 공개된 공공데이터 중 에너지 소비 데이터를 활용하고자 한다. 에너지 소비 데이터를 미래 예측 연구에 많이 이용되고 있는 마코프 프로세스를 적용하여, 에너지 소비를 예측할 수 있는 모델링을 제안하고, 그 기대 효과에 대해 논의 한다.

  • PDF