Bu Jong-Su;Hong Jong-Kyu;Park Won-Ik;Kim Ryong;Kim Young-Kuk
The Journal of Society for e-Business Studies
/
v.10
no.2
/
pp.109-132
/
2005
With the flood of multimedia contents over the digital TV channels, the internet, and etc., users sometimes have a difficulty in finding their preferred contents, spend heavy surfing time to find them, and are even very likely to miss them while searching. In this paper we suggests two-step clustering technique using time schema on how the system can recommend the user's preferred contents based on the collaborative filtering that has been proved to be successful when new users appeared. This method maps and recommends users' profile according to the gender and age at the first step, and then recommends a probabilistic item clustering customers who choose the same item at the same time based on time schema at the second stage. In addition, this has improved the accuracy of predictions in recommendation and the efficiency in time calculation by reflecting feedbacks of the result of the recommender engine and dynamically update customers' preference.
According to many smart devices are development, SNS(Social Network Service) users are getting higher that is possible for real-time communicating, information sharing without limitations in distance and space. Nowadays, SNS users that based on communication and relationships, are getting uses SNS for information sharing. In this paper, we used the SNS posts for users to extract the category and information provider, how to following of recommend method. Particularly, this paper focuses on classifying the words in the text of the posts and measures the frequency using Inception-v3 model, which is one of the machine learning technique -CNN(Convolutional Neural Network) we classified image word. By classifying the category of a word in a text and image, that based on DMOZ to build the information provider DB. Comparing user categories classified in categories and posts from information provider DB. If the category is matched by measuring the degree of similarity to the information providers is classified in the category, we suggest that how to recommend method of the most similar information providers account.
Due to the rapid growth of the online fashion market and the resulting expansion of online choices, there is a problem that the seller cannot directly respond to a large number of consumers individually, although consumers are increasingly demanding for more personalized recommendation services. Images are being tagged as a way to meet consumer's personalization needs, but when people tagging, tagging is very subjective for each person, and artificial intelligence tagging has very limited words and does not meet the needs of users. To solve this problem, we designed an algorithm that recognizes the shape, attribute, and emotional information of the product included in the image with AI, and codes this information to represent all the information that the image has with a combination of codes. Through this algorithm, it became possible by acquiring a variety of information possessed by the image in real time, such as the sensibility of the fashion image and the TPO information expressed by the fashion image, which was not possible until now. Based on this information, it is possible to go beyond the stage of analyzing the tastes of consumers and make hyper-personalized clothing recommendations that combine the tastes of consumers with information about trends and TPOs.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.6
/
pp.15-20
/
2023
This paper is a study on the development of an artificial intelligence (AI) system algorithm that recommends indirect advertising products suitable for character web dramas. The goal of this study is to increase viewers' content immersion and help them understand the story of the drama more deeply by recommending indirect advertising products that are suitable for writing lines for web dramas. In this study, we analyze dialogue and plot using the natural language processing model GPT, and develop two types of indirect advertising product recommendation systems, including prop type and background type, based on the analysis results. Through this, products that fit the story of the web drama are appropriately placed, allowing indirect advertisements to be exposed naturally, thereby increasing viewer immersion and enhancing the effectiveness of product promotion. There are limitations of artificial intelligence models, such as the difficulty in fully understanding hidden meanings or cultural nuances, and the difficulty in securing sufficient data for learning. However, this study will provide new insights into how AI can contribute to the production of creative works, and will be an important stepping stone to expand the possibilities of using natural language processing models in the creative industry.
KIPS Transactions on Software and Data Engineering
/
v.11
no.11
/
pp.447-454
/
2022
In the era of the 4th industrial revolution, we are living in a flood of information. It is very difficult and complicated to find the information people need in such an environment. Therefore, in the flood of information, a recommendation system is essential. Among these recommendation systems, many studies have been conducted on each recommendation system for movies, music, food, and clothes. To date, most personalized recommendation systems have recommended clothes, books, or movies by checking individual tendencies such as age, genre, region, and gender. Future generations will want to be recommended clothes, books, and movies at once by checking age, genre, region, and gender. In this paper, we propose a recommendation system that recommends personalized clothes and food at once according to the user's emotions and weather. We obtained user data from Twitter of social media and analyzed this data as user's basic emotion according to Paul Eckman's theory. The basic emotions obtained in this way were converted into colors by applying Hayashi's Quantification Method III, and these colors were expressed as recommended clothes colors. Also, the type of clothing is recommended using the weather information of the visualcrossing.com API. In addition, various foods are recommended according to the contents of comfort food according to emotions.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.07a
/
pp.372-375
/
2010
본 논문에서는 홈-네트워크를 이용하여 댁네에서 실시간 멀티미디어 전송 서비스를 수행하기 위한 홈서버 및 모바일 플랫폼을 제안한다. 본 논문에서 제안한 홈서버는 기존의 기술들과는 달리 사용자 선호도 정보를 기반으로 멀티미디어 콘텐츠를 지능적으로 추천하는 기능과 함께 네트워크 상태 및 사용자 기기 정보를 고려한 전송 서비스를 제공한다. 또한 본 논문에서 제안한 모바일 플랫폼 하드웨어에는 고속의 중앙처리장치와 메모리 컨트롤러 및 별도의 그래픽 가속기를 탑재하였으며, 모바일 플랫폼의 멀티미디어 재생기는 확장성을 가지는 구조와 플랫폼 독립성을 지향하도록 설계 및 개발되었다.
Park, Jisoo;Rew, Jehyeok;Rho, Seungmin;Hwang, Eenjun
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.712-715
/
2016
최근, 뷰티 산업 활성화와 더불어 소셜 미디어 확산으로 인해 아름다워지고자 하는 인간의 욕구가 과거보다 증대되어, 자신에게 어울리는 메이크업과 패션을 찾고자 하는 경향이 강해지고 있다. 이에 따라 자신을 돋보이게 하는 퍼스널 컬러가 주목받으면서 전문가에게 자신의 퍼스널 컬러를 진단받는 사람이 늘어나고 있다. 하지만 이러한 진단은 전문가의 주관적인 판단으로 결정되므로 정확한 진단을 받기 어려우며 진단에 따른 시간적, 비용적 소모가 발생하는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위해, 온라인상에서 영상처리를 통해 효과적인 퍼스널 컬러 분석과 메이크업 추천이 가능한 시스템을 제안한다. 다양한 영상처리 방법을 통하여 사용자의 신체 영역을 추출하고, 색상 데이터 값을 이용하여 퍼스널 컬러를 분석하였으며 그에 따라 적절한 메이크업 콘텐츠를 추천하는 기법을 제안하였다. 마지막으로, 다양한 사용자로부터 만족도 실험을 통해 제안한 기법이 효과적임을 나타내었다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.279-280
/
2020
최근 소셜 미디어로 이름을 알린 이색 카페와 맛집을 찾아다니는 문화가 확산되는 추세이다. 블로그 포털 검색을 통해 찾아본 맛집은 광고성 게시물이 많아서 신뢰도가 떨어지고, 맛집 관련 게시물 수가 많아서 모든 게시물들을 수동으로 읽기는 불가능하다. 본 논문에서는 사용자들이 선호해서 자발적으로 공유하는 신뢰도 높은 인스타그램의 맛집 포스트 데이터를 이용하여 아이템 기반의 협업 필터링(Item-based Collaborative Filtering) 기법을 통해 사용자의 취향에 맞고 선호할 만한 맛집을 자동으로 추천해주는 알고리즘 및 시스템을 소개한다.
As the popularity of single-person media content increases, We investigated the causal relationship between perceived value and intention to recommend to others. Individuality was studied on the tendency to sensation seeking and novelty seeking, which is a tendency to take boredom sensitive to monotonous and repetitive daily routines, and novelty seeking refers to new information and stimuli. The hypothesis was that high sensation seeking and high novelty seeking would perceived emotional value, epistemic value, and economic value for a single person 's media content. Hypothesis testing was performed using multiple regression analysis using SPSS21. As a result of the hypothesis test, The novelty seeking has a positive effect on emotional value, epistemic value, and economic value. Users who want to explore and enjoy new things could perceived the emotional value of having fun, fun, and sadness through single-person content, perceived a epistemic value and enjoy new information and situations as a tool to recognize new stimuli and know what they didn't know. And it could be seen that users perceive the economic value that they can enjoy at low cost or free service. The sensation seeking has a significant effect on epistemic value, but it did not affect emotional value and economic value significantly. Those who have a high tendency to sensation seeking can perceive curiosity about one-person media contents, so that they can perceive epistemic value. However, those who feel that they have not significant influence on economic value and emotional value can easily understand that expecting one's content does not feel bored by paying for a low cost or free service.
Nowadays various new items are available, but limitation of searching effort makes it difficult for customers to search new items which they want to purchase. Therefore new item providers and customers need recommendation systems which recommend right items for right customers. In this research, we focus on the new item recommendation issue, and suggest preference boundary- based procedures which extend traditional content-based algorithm. We introduce the concept of preference boundary in a feature space to recommend new items. To find the preference boundary of a target customer, we suggest heuristic algorithms to find the centroid and the radius of preference boundary. To evaluate the performance of suggested procedures, we have conducted several experiments using real mobile transaction data and analyzed their results. Some discussions about our experimental results are also given with a further research area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.