• Title/Summary/Keyword: 미네랄 캐스팅

Search Result 4, Processing Time 0.022 seconds

Design Technology of High Speed and Precision Machining Center (초곡속 고정밀 머시닝 센터 설계 기술)

  • Kim, Bup-Min;Choi, Won-Sun;Ha, Jae-Young;Kim, Tae-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.869-877
    • /
    • 2011
  • In order to manufacture precision parts which are used for IT and BT Industry by machining, users need higher speed & precision machining center. So, for development of this kind of machine, we designed gantry type machining center which is piling of 3 axes on one moving body and the 2-axis rotary table is fixed on the base. It is applied linear motor that is instead of ball-screw and servo-motor combination and 50,000 rpm high-speed spindle. Composite material structure called mineral casting or resin concrete is applied also. This paper presents design technology and evaluated results of high speed and precision machining center.

Biodisc Tissue-Engineered Using PLGA/DBP Hybrid Scaffold (DBP/PLGA 하이브리드 담체를 이용한 조직공학적 바이오 디스크 개발)

  • Ko, Youn-Kyung;Kim, Soon-Hee;Jeong, Jae-Soo;Ha, Hyun-Jung;Yoon, Sun-Jung;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2007
  • Demineralized bone particle (DBP) has been used as one of the powerful inducers of bone and cartilage tissue specialization. In this study, we fabricated DBP/PLGA scaffold for tissue engineered disc regeneration. We manufactured dual-structured scaffold to compose inner cylinder and outer doughnut similar to nature disc tissue. The DBP/PLGA scaffold was characterized by porosity, wettability, and water uptake ability. We isolated and cultured nucleus pulposus (NP) and annulus fibrosus (AF) cells from rabbit intervertebral disc. We seeded NP cells into the inner core of the hybrid scaffold and AF cells into the outer portion of it. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl) -2,5- diphenyltetrazolium -bromide (MTT) test. PLGA and PLGA/DBP scaffolds were implanted in subcutaneous of athymic nude mouse to observe the formation of disc-like tissue in vivo. And then we observed change of morphology and hematoxylin and eosin (H&E). Formation of disc-like tissue was better DBP/PLGA hybrid scaffold than control. Specially, we confirmed that scaffold impregnated 20 and 40% DBP affected to proliferation of disc cell and formation of disc-like tissue.

Preparation and Characterization of Demineralized Bone Particle-loaded PLGA Scaffold for Tissue Engineered Bone (조직공학적 골재생을 위한 탈미넬화된 골분을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang Ji Wook;Lee Bong;Han Chang Whan;Kim Mun Suk;Cho Sun Hang;Lee Hai Bang;Khang Gilson
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.382-390
    • /
    • 2004
  • One of the significant natural bioactive materials is demineralized bone particle (DBP) whose has a powerful induce. of new bone growth. In this study, we developed the DBP loaded poly-lactide (PLA) and poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. PLA/DBP and PLGA/DBP scaffolds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy. BMSCs were stimulated by osteogenic medium and characterized by histological stained Wright-Giemsa, Alizarin red, von Kossa, and alkaline phosphate activity (ALP). DBP impregnated scaffolds with BMSCs were implanted into the back of athymic nude mouse to observe the effect of DBP on the osteoinduction compared with control scaffolds. It can be observed that the porosity was above $90.2\%$ and the pore size was above 69.1$\mu$m. BMSCs could be differentiated into osteoprogenitor cells as result of wright-giemsa, alizarin red, von Kossa and ALP staining. In in vivo study, we could observed calcification region in PLA/DBP and PLGA/DBP groups, but calcification did not occur almost in control scaffolds. From these results, it seems that DBP as well as BMSCs play an important role for bone induction in PLA/DBP and PLGA/DBP scaffolds.