• Title/Summary/Keyword: 미고결 지반

Search Result 46, Processing Time 0.032 seconds

Tunnel Deformation in Shallow Unconsolidated Ground by Using Strain-Softening Model (변형연화모델을 이용한 미고결 지반의 터널변형)

  • Seo, In-Shik;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the prediction for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF

Tunnel Pressure acting on Shallow Tunnel in Unconsolidated Ground (미고결 저토피 터널에 작용하는 토압에 관한 연구)

  • Lee, Jae-Ho;Akutagawa, Shinish;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.453-463
    • /
    • 2007
  • Terzaghi's tunnel pressure theory is generally used to estimate primary design pressures on tunnel support for shield and urban NATM tunnels until now. A trial is made in this paper to investigate the interaction between the ground deformation behavior and Terzaghi's tunnel pressure, which assumes pound's limit (or critical) state, by considering results of 'Terzaghi's tunnel pressure theory. two-dimensional reduced-scale model tunnel tests and nonlinear numerical analysis based on strain softening modeling. A full understanding between tunnel pressure and ground deformation behavior under the tunnel excavation and an effective utilization of this interaction lead to an economical tunnel support design and a safe construction of tunnel.

Development of Holocene Unconsolidated Stratigraphic Sequence from Lower Reaches of Nagdong River, Dongup Area (동읍지역 제4기 미고결 지층의 퇴적이력)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Seong-Hoon;Lee, Seung-Won;Han, Seok-Hee;Cho, Sang-Soon;Jun, Whi-Chae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.876-881
    • /
    • 2006
  • This study was carried out to understand depositional environment and genesis of clayey soils that distributed in the Dongup area. On the basis of detailed observation and description on mineralogy, geochemical composition, geophysical properties, paleontological analysis of cored sediments, three sedimentary unit have been distinguished. From bottom to top, they are early Holocene freshwater muddy deposit(Unit I, fluvial swamp), late Holocene silt and muddy deposit(Unit II, alluvial deposit), late Holocene muddy deposit(Unit III, fluvial swamp). Unit II is divided into three part: the lower part-unweathered massive silt and muddy deposit, middle part-weathered layered slit and muddy deposit and upper part-weathered massive muddy deposit.

  • PDF

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases (터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구)

  • Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.

An attempt at soil profiling on a river embankment using geophysical data (물리탐사 자료를 이용한 강둑 토양 종단면도 작성)

  • Takahashi, Toru;Yamamoto, Tsuyoshi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The internal structure of a river embankment must be delineated as part of investigations to evaluate its safety. Geophysical methods can be most effective means for that purpose, if they are used together with geotechnical methods such as the cone penetration test (CPT) and drilling. Since the dyke body and subsoil in general consist of material with a wide range of grain size, the properties and stratification of the soil must be accurately estimated to predict the mechanical stability and water infiltration in the river embankment. The strength and water content of the levee soil are also parameters required for such prediction. These parameters are usually estimated from CPT data, drilled core samples and laboratory tests. In this study we attempt to utilise geophysical data to estimate these parameters more effectively for very long river embankments. S-wave velocity and resistivity of the levee soils obtained with geophysical surveys are used to classify the soils. The classification is based on a physical soil model, called the unconsolidated sand model. Using this model, a soil profile along the river embankment is constructed from S-wave velocity and resistivity profiles. The soil profile thus obtained has been verified by geotechnical logs, which proves its usefulness for investigation of a river embankment.

Deformation Analysis of Shallow Tunnel Using Tunnel Model Test and Computational Analysis (모형시험과 수치해석을 이용한 저토피 터널의 변형거동에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in shallow tunnel design and construction in urban area. For deformation analysis of shallow tunnel due to excavation it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigaties quantitatively the deformation behavior of shallow tunneling by model tunnel test and strain softening analysis Incorporating the reduction of shear stiffness and strength parameters. The comparison of model tunnel test result and numerical simulation using strain softening analysis showed good agreement in crown settlement, normalized subsidence settlement and developing shear bands above tunnel shoulder. In this study, it is blown that the strain softening modeling is applicable to the nonlinear deformation analysis of shallow tunnel.

The Case of Measurement for Shallow Soil Tunnel with Pre-Supported Nail Method (저토피 토사터널에 적용된 선지보 네일공법의 시공 및 계측사례)

  • Seo, Dong-Hyun;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.69-79
    • /
    • 2012
  • This pre-supported nail method is able to decrease ground displacements more than NATM because this method reinforces ground with grouted steels before tunnel excavation. Therefore this method has advantage of being able to increase the stability and workability. This study presents applicability of pre-supported nail method with case of site measurement for shallow tunnel composed with high groundwater level and unconsolidated soil, performs this research the mechanism of new supporting system is compared with the conventional existing supporting system in terms of soil reinforcement. NATM has characteristics that construction stage displacement of the apparent height difference is observed in the step of divided excavation processing. Otherwise it is analyzed that pre-supported nail method is not sensitive in the displacement problem of excavation processing in comparison to NATM. It is found that this method is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone without arching effect.

Analysis for Rainfall Infiltration Using Electrical Resistivity Monitoring Survey (강우 침투 특성 분석을 위한 전기비저항 모니터링 탐사)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Park, Dug-Keun;Yoon, Yeo-Jin;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.41-53
    • /
    • 2012
  • During rainfall period, to identify the characteristics of the infiltration of moisture, electrical resistivity monitering survey was carried out to weathered zone. Four regions of geophysical exploration areas with different rock types, four regions were selected. An area consists of mafic granite and three areas are composed of sedimentary rocks (Sandstone, Shale, Unconsolidated Mudstone). Survey was conducted from June (rainy season) to November (dry season), and during the period the change in resistivity was observed. According to the result of monitoring exploration on Geumjeong and Jinju areas, for the estimation of the standard rainfall, it is necessary to estimate the effects of the antecedent rainfall during the rainy season based on the overall rainfall from June till October and also necessary to consider this for the estimation of the half period. Also, the vertical distribution of the low resistivity anomaly zone does not show that the infiltration of moisture does not occur uniformly from the surface of the ground to the lower ground but shows that it occurs along the relaxed gap of the crack or soil stratum of the weathering zone. In Pohang area, the type of moisture infiltration is different from that of the granite or sedimentary rock. Since, after the rainfall, the rate of infiltration to the lower ground is high and the period of cultivation to the lower bedrock aquifer is short, it has similar effect to that of the antecedent rainfall applied for the estimation of the standard rainfall being presently used. In Danyang, due to the degree of water content of the ground, the duration period of the low resistivity anomaly zone observed in the lower ground of the place where clastic sedimentary rock is distributed is similar to that in Pohang area. The degree of lateral water diffusion at the time of localized heavy rain is the same as that of the sedimentary rock in Jinju. According to the above analysis results, in Danyang area, the period when the antecedent rainfall has its influence is estimated as three weeks or so.

A Study on the Reinforcement and Environmental Impact of LW Injection (LW주입에 의한 지반보강 및 환경영향성에 관한 연구)

  • Chun, Byungsik;Do, Jongnam;Sung, Hwadon;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.121-131
    • /
    • 2006
  • This study is performed to examine the ground reinforcement effect and the environmental impact of LW injection, which is widely used during the excavation of high-rise apartment buildings. In addition, it proved that by conducting field exploration and laboratory test the engineering ground reinforcement effect of LW injection in the ground has low coefficient of permeability. The environmentally friendly aspect was evaluated through an assessment of environmental impact. The results of laboratory test shows that LW coagulating material with SC type soil structure has significant improvement of uniaxial compressive strength, increasing by three times and the shear strength increasing by twice, coefficient of permeability decreasing six to seven times. And the result of environmental impact tests show that from 6 hour after where the pH increases until 7.96 to initially it diminished, it started and to 80 hour after it recovered a pH 7.25 initially with 7.30. The chemical composition analysis test result that unpolluted water and polluted water hydrogen ion concentration (pH) show that the unpolluted water pH 7.36, polluted water pH 7.85, which is inside the Ministry of Environment standard of drinking water (the pH 5.8~8.5). The assessment of environmental impact and chemical analysis test also demonstrate that the LW coagulating material is environmentally friendly. In the $Cr^{6+}$ and the salinity detection test, it was proven that the salinity is slight and the $Cr^{6+}$ is not detected.

  • PDF

Subsidence Observation of time-series surface deformation at New Orleans using Differential SAR Interferometry (레이더 차분간섭기법을 이용한 뉴올리언스 지역의 시간에 따른 지표변위 관측)

  • Jo, Min-Jeong;Lee, Chang-Wook;Park, Jeong-Won;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.148-152
    • /
    • 2008
  • 뉴올리언스는 미시시피 강 하구에 위치하였으며 지난 2005년 허리케인 카트리나에 의해 큰 침수 피해를 입은 지역이다. 이 도시는 신생대 지층에 자리하고 있어 미고결층의 다짐작용 및 단층작용으로 최대 29mm 정도의 연간 침하율을 보여 왔다. 뉴올리언스의 계속된 침하작용은 평균해수면보다 낮은 지역에 위치한 도시의 침수위험성을 가중시키고 있어 현재 이에 관한 많은 연구가 진행되고 있다. SAR영상을 이용한 차분간섭기법(DInSAR, Differential Interferometry of SAR)은 지반침하, 지진, 화산활동 등과 같이 수십 km$^2$에 걸쳐 발생하는 지표변위를 수cm-수mm의 정밀도로 관측 가능한 기술이다. 이 연구에서는 차분간섭기법을 이용하여 2005년 2월부터 2007년 2월까지 촬영된 21개의 RADARSAT-1 Fine beam mode(F5) 영상으로부터 25개의 차분간섭영상(DInSAR Interferogram)을 생성하였다. 또한 차분간섭도의 spatial decorrelation을 극복하고 시간에 따른 LOS 방향의 변위를 관측하기 위해 분석 알고리즘으로는 보완된 SBAS(small baseline subset)기법을 이용하였으며, 이 기법을 이용하여 대기의 영향 및 노이즈를 제거한 결과를 얻을 수 있었다. 우리는 LOS방향의 2차원 변위분포 맵을 작성하였으며, 그 결과 전체적인 침하율은 크지 않지만, 도시의 서쪽지점에서 나타나는 상대적으로 큰 -1.49cm/yr의 변위 값과 동쪽 지점에서 0.33cm/yr의 변위 값을 관측하였다. 이 같은 결과는 앞으로의 연구에서 실측 데이터 및 동일기간의 다른 SAR영상자료의 연구를 통해 보완해 나갈 것이다.

  • PDF