• Title/Summary/Keyword: 물 재활용

Search Result 567, Processing Time 0.024 seconds

Life Cycle Assessment(LCA) of Rubber Recycling Process in Waste Tire (폐타이어 고무 재활용 공정의 전과정평가 연구)

  • Ahn, Joong Woo;Kim, Jin Kuk
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.74-83
    • /
    • 2018
  • This study conducted the Life Cycle Assessment(LCA) on waste rubber recycling technology for recovering rubber product from the waste tires. Environmental impacts were assessed for the five categories of impacts: global warming, resource depletion, acidification, eutrophication, photochemical oxide production, and ozone layer depletion. When recycling 1ton of waste tire containing rubber, global warming impact was 1.77E+02 kg $CO_2-eq.$, resource depletion impact was 1.23E+00 kg Sb-eq., acidification impact was 5.92E-01 kg $SO_2-eq.$, eutrophication impact was 1.23E-01 kg $PO{_4}^{3-}-eq.$, photochemical oxide production impact was 3.42E-01 kg $C_2H_4-eq.$, and ozone layer depletion impact was 1.87E-04 kg CFC11-eq. In terms of overall environmental impacts, carbon, softener and electricity the greatest impact, so it is necessary to compare the environmental impacts of the raw materials to replace carbon and softener, and a method to reduce the filler usage in the process is needed. In addition, it is necessary to improve energy efficiency, change to low-energy sources, and apply renewable energy.

환경물류시스템 접근방법

  • 박석하
    • LOGISTICS
    • /
    • v.2 no.3 s.5
    • /
    • pp.32-35
    • /
    • 2004
  • 최근 삶의 질이 향상되면서 환경문제에 대한 인식이 점차 증가하고 있다. 이러한 환경문제를 물류측면에서는 어떻게 이해하고, 기업입장에서는 환경물류 시스템 설계는 어떻게 접근 할 것인지에 대한 의견을 제시해보고자 한다. 환경물류의 접근에는 우선 자원절약, 재활용, 친환경 대체재, 폐기 및 배출물의 제로화를 통하는 방법이 필요하다. 이에 환경물류의 개요와 제품 라이프 사이클과 환경물류흐름, 그리고 환경물류시스템 설계에 대해서 2회에 걸쳐 게재한다.

  • PDF

환경물류의 이해

  • 박석하
    • LOGISTICS
    • /
    • v.2 no.4 s.6
    • /
    • pp.58-61
    • /
    • 2004
  • 최근 삶의 질이 향상되면서 환경문제에 대한 인식이 점차 증가하고 있다. 이러한 환경문제를 물류측면에서는 어떻게 이해하고, 기업입장에서는 환경물류 시스템 설계는 어떻게 접근 할 것인지에 대한 의견을 제시해보고자 한다. 환경물류의 접근에는 우선 자원절약, 재활용, 친환경 대체재, 폐기 및 배출물의 제로화를 통하는 방법이 필요하다. 이에 지난호에서는 환경물류의 개요와 제품 라이프 사이클과 환경물류흐름, 그리고 이번호에서는 환경물류시스템 설계에 대해서 2회에 걸쳐 개재한다.

  • PDF

Recovery of EDTA from Waste Fluid of Archeological Waterlogged Wood Conservation Treatment (수침목재유물(水浸木材遺物) 보존처리(保存處理) 폐수(廢水)로부터 EDTA회수(回收))

  • Yang, Seok-Jin;Song, Ju-Yeong;Kim, Jong-Hwa
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.58-63
    • /
    • 2011
  • pH control-precipitation method is used for recovery of EDTA from waste fluid of archeological waterlogged wood conservation treatment. EDTA has been used for eliminating of blacken effect in archeological waterlogged wood which was buried in the ground for long period of time. The black substance is generated by Fe$^{3+}$ in the soil reacted with tannin in the archeological waterlogged wood. In order to remove the black substance in archeological waterlogged wood, EDTA was used. The black substance is eliminated from wood as Fe-EDTA complex are formed, and EDTA is separated and precipitated from Fe-EDTA complexes at pH 2.68 or less. The result of analysis of the precipitated products and the commercial EDTA by FT-IR and FE-SEM showed that precipitated product by pH adjusted was not a type of Fe-EDTA complex, but pure EDTA. In this study, Fe$^{3+}$ from waste fluid of EDTA can be separated by HCl added. EDTA can be recycled by using the method of precipitation of EDTA in a strong acid.

Technical Trends in the Patents and Papers for the Recycling of Organic Residues from Waste Printed Circuit Boards (특허(特許)와 논문(論文)으로 본 폐(廢)PCB 유기계(有機界) 잔유물(殘留物) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Dai-Soo;Shin, Sera;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2013
  • Electronic products such as appliances, computers, and cellular phones have printed circuit boards (PCBs) in common and the PCBs in the waste electronic products contain valuable metals and organic resins. In Korea, recovery and recycling of the organic resins as well as the valuable metallics from the wastes are required indeed as the most of resources are being imported from abroad. In this article, the patents and papers for the recycling of organic residues from the waste PCBs were collected and analyzed. The open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) and SCI journals from 1979 to 2012 were investigated. The patents and journals were collected using key-words and filtered by the definition of the technology. The patents and journals were analyzed by the years, countries, companies, and technologies and the technical trends were discussed in this paper. It is showed sluggish relatively activity of published papers and patent applications for polymer manufacturing technology in local and abroad.

Trends of Recycling of Indium-Tin-Oxide (ITO) Target Materials for Transparent Conductive Electrodes (TCEs) (투명전극용 인듐 주석 산화물 타겟 소재의 재자원화 동향)

  • Hong, Sung-Jei;Lee, Jae Yong
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • Indium-Tin-Oxide (ITO) is a material that is widely used for transparent conductive electrodes (TCEs). Indium (In), chief element of the ITO, is expected to be depleted in the near future owing to its high cost and limited reserves. To overcome the issue, ITO has to be retained by recycling redundant ITO targets after manufacturing processes. In this article, we proposed an efficient recycling way of the redundant ITO targets with investigation of the current recycling tendencies in domestic and foreign countries. As a result, it was revealed that only In is recycled from the redundant targets in domestic and Japan. As well, fabrication of TCEs is being researched with ITO nanoparticles solutions. However, since the TCEs fabricated with ITO target is superior to those with other materials, it is thought that establishment of regeneration technology of ITO itself is demanded for an efficient recycling and fabrication of ITO target.

Backfill Materials for Underground Facility with Recycling Materials - Quantification of Design Parameters (재활용재료를 이용한 지하매설물용 뒤채움재 - 설계입력변수 정량화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.91-96
    • /
    • 2011
  • The design, construction and management of underground facilities as infrastructure of nation should be properly carried out. One of reasons for underground facilitie's failure is a non-proper construction of backfill materials. This is common for circular underground pipes. A non-proper compaction is the cause of settlement and decrease of performance of underground facilities. The use of controlled low strength materials is an alternative to reduce the couple of failure problems. The flowability, self-cementation, and non-compaction are the major advantages to use the controlled low strength materials. In this research, couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers, were adopted. The basic properties of each materials were determined according to KS or ASTM. Also, couple of laboratory tests were carried out to get the design parameters for geotechnical and roadway area.

Optimum Conditions of Dismantlement for Recovery of Valuables from Spent Lithium Primary Batteries (폐일차리튬전지로부터 유가금속을 회수하기 위한 해체공정의 최적화)

  • Yoo, Koungkeun;Kim, Hong-in;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.51-58
    • /
    • 2019
  • Dismantlement of lithium primary batteries without explosion is required to recycle the lithium primary batteries which could be exploded by heating too much or crushing. In the present study, the optimum discharging condition was investigated to dismantle the batteries without explosion. When the batteries were discharged with $0.5kmol{\cdot}m^{-3}$ sulfuric acid, the reactivity of the batteries decreased after 4 days at $35^{\circ}C$ and after 1 day at $50^{\circ}C$, respectively. This result shows that higher temperature removed the high reactivity of the batteries. Because loss of metals recycled increases when the batteries are discharged only with the sulfuric acid, discharging process using acid solution and water was newly proposed. When the batteries were discharged with water during 24 hours after discharging with $0.5kmol{\cdot}m^{-3}$ sulfuric acid during 6 hours, the batteries discharged were dismantled without explosion. Because decrease in loss of metals was accomplished by new process, the recycling process of the batteries could become economic by the 2-step discharging process.

Review on Reprocessing Techniques for Mineral Wastes (광산폐기물의 재활용 기술 동향과 전망)

  • 최우진
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.113-119
    • /
    • 2004
  • Mineral wastes are generated by the minerals, mining, and metal industries. These are generally inorganic waste streams of mainly waste rock or residues from refining during extraction of metals or minerals from the ore. There are many plants where minerals are recovered in secondany circuits, treating tailings, where the feed grades are much lower than would be economic on a mined ore. The world is now becoming aware of the finite nature of its resources at a price, and of the ever-increasing development costs of large new mines. Reprocessing of old tailings on a large scale must be worth examining very seriously by those with access to sufficient material of this type. In the present paper, mineral separation techniques to recover valuable metals and resources from the old tailings are reviewed, and new trends for future developments are also discussed.

Basic Study for the Recycling of Phosphogypsum (인산부생석고(燐酸副生石膏)의 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Park, Woon-Kyoung;Song, Young-Jun;Lee, Jung-Mi;Lee, Gye-Seung;Kim, Youn-Che;Shin, Kang-Ho;Yoon, Sin-Ae;Park, Charn-Hoon
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.58-68
    • /
    • 2006
  • This study is carried out for the purpose of investigating the property of phosphogypsum, and suggesting the proper recycling system for it. The chemical composition, mineralogical composition, particle size distribution and shape of phosphogypsum were investigated. The size distribution and constitution of impurities, distribution of heavy metals are also investigated. In conclusion, the grade and yield of recoverable phosphogypsum were discussed.