본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.
Seo, Jae-Seung;Lee, Dong-Ryul;Choi, Si-Jung;Kang, Seong-Kyu
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.366-366
/
2011
수자원 관리 정책은 한정된 수자원의 재배분과 효율적 이용, 수요관리에 의한 물 절약 정책 등, 지속가능한 발전을 추구하면서 물 부족의 사회적 대응력을 향상시키기 위한 정책으로 전환되어 가고 있다. 환경부에서는 2000년에 "물 절약 종합대책(2000.3)"발표를 시작으로 시 도별 "물 수요관리 종합대책"을 수립하였고, "수자원장기종합계획(2006.9)"수립에서는 수요관리 시나리오에 따른 장래수요량을 예측하여 발표하였다. 그러나 수요관리에 따른 절감량 산정 및 정량화된 수요량 평가 시스템의 부재로 수요관리 정책수립이나, 장래 용수수요량 예측에 어려움을 겪고 있다. 이에 따라 물 수요관리에 따른 물 사용량의 변화를 파악하고, 이를 이용하여 장래수요량 예측 및 물 수급전망에 연계할 수 있는 시스템이 필요하다. 본 연구에서는 지자체별 수요관리 계획 및 추진결과에 따른 물 사용량의 변화를 분석하였다. 또한 수요관리 계획과 추진전후의 상수도 관련 지표를 비교하여 합리적인 수요관리 계획 수립을 제안하였다. 분석결과 물 절약 종합대책 및 물 수요관리 종합대책 수립이후 1인1일당 급수량의 증가가 대체로 둔화되는 것을 알 수 있었다. 그렇지만 수요관리 계획을 수립한 일부 지자체는 과도한 계획수립으로 인하여 계획대비 수요관리 추진 효과가 미비한 곳도 있었다. 이러한 지자체는 현 상황을 고려한 합리적인 수요관리 계획 수립이 필요함을 알 수 있었다. 본 연구결과는 장래 용수수요량 예측이나 물수요관리 정책수립에 활용할 수 있을 것으로 판단된다.
Koo, Kang Min;Han, Kuk Heon;Lee, Gyumin;Jun, Kyung Soo;Yum, Kyung Taek
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.419-419
/
2021
수자원 관리 패러다임은 공급 위주에서 수요관리로 전환되고 있다. 가용한 수자원은 한정적이나 급속한 인구증가와 도시화로 인한 물 수요의 증가로 수요관리의 효율성이 중시되고 있기 때문이다. 기존 상수도시스템은 노후화로 가동효율이 점차 낮아지고 있으며, 인력으로 월 또는 격월로 소비자의 물 사용량을 검침해 실시간 관리가 불가능하여 수요와 공급의 불균형을 초래한다. 이러한 문제를 해결할 대안으로 IT 기술과 전통적인 물관리 기술을 접목한 Smart Water Grid는 양방향 통신장치를 이용해 실시간으로 소비자의 물 사용량을 모니터링한다. 물 사용 특성을 잘 파악하면 보다 정확한 물 수요 예측이 가능하다. 특히 소비자들의 시간별, 평일, 주말, 그리고 주별 물 사용 특성을 파악하면 미래 물 수요 예측에 도움이 된다. 예측된 물 수요량에 따라 물 공급 배분 계획을 수립하여 운영 효율성을 높일 수 있다. 물 수요예측 방법 중 k-mean 군집분석은 시간별 물 사용량을 이용해 서로 유사한 여러 개의 부분집합으로 할당하여 분류하는 Machine learing 방법으로 물 사용의 유사성을 파악할 수 있다. SWG 연구단은 2019년 Vietnam Hai Duong province에 SWG Pilot plant를 구축하고 27개의 Smart water meter를 설치하여 운영하고 있다. 이에 본 연구에서는 소비자의 물 사용 특성을 분석하기 위해 27개 SWM로부터 수신된 2019년 11월 14일부터 2020년 12월 3일까지 1시간 단위의 물 사용량 데이터를 수집하였다. 그리고 k-mean 군집 방법을 이용해 시간별, 평일, 주말, 그리고 주별 물 사용 특성을 분석하였다. 이 때 최적의 군집 개수 결정을 위해 Elbow 방법을 적용하였다. 분석 결과 각 소비자의 물 사용량 특성에 따라 평균 물 수요패턴 추정이 가능하며, 향후 물 수요 예측에 도움이 될 것으로 사료된다.
본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측알고리즘 개발에 있어서, 지방 소도시 지역의 물 공급패턴에 대한 영향인자를 도출하기 위하여 기상환경인자와 과거 물 공급량에 대한 상관성 분석을 실시하였다. 그리고, 신경회로망 이론 중 ELM알고리즘을 적용한 단기 물 수요예측알고리즘을 개발하여 현장 적용성을 검토하고자 한다.
Ha, Jun-Su;Lim, Chae Hwan;Cho, Kwang-Hee;Ha, Hun-Koo
Journal of Korea Port Economic Association
/
v.37
no.3
/
pp.1-17
/
2021
Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service levels by reducing costs and shipowner latency. We showed that our method is capable of accurately and reliably predicting container throughput in short-term(days). Forecasting accuracy was improved by more than 22% over time series methods(ARIMA). We also demonstrated that the current method is assumption-free and not prone to human bias. We expect that such method could be useful in a broad range of fields.
Kim, Jungwook;Lee, Daewung;Hong, Seungjin;Joo, Hongjun;Kim, Hung Soo
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.42-42
/
2016
지난 135년(1880~2014년) 동안 지구온난화에 따른 기후변화로 지구의 평균 기온은 $0.85^{\circ}C$ 상승하였으며, 이는 수문현상에 영향을 미쳐 강우량 및 강우강도가 증가하는 경향성을 보이고 있다. 이처럼 기후변화로 말미암아 수문 현상의 변화에 따른 불확실성이 커져 물 순환 과정의 정확한 파악이 더욱 어려워지고 있다. 따라서 미래 안정적인 물 공급을 위한 수자원계획 수립 및 관리를 위해 기후변화를 고려한 물 수요 예측이 필요하다고 하겠다. 본 연구에서는 도시화에 따라 물수요가 변화하고 있는 안성천을 대상유역으로 선정하여 기후변화를 고려한 미래 물 부족량을 산정하고자 하였다. 이를 위해, 기후변화 RCP 8.5 시나리오를 이용하여 미래 강수량을 모의하였고, 준 분포 강우-유출 모형인 SLURP 모형을 이용하여 미래 유출량을 분석하였다. 미래 유출량을 토대로 정확한 물 수요 예측을 위해 통합수자원평가계획 모형인 K-WEAP 모형을 이용하여 소유역별 물수지 분석을 위한 네트워크 및 시나리오를 구성하였다. 또한 용수이용량(생활, 공업, 농업용수)의 과거자료를 활용한 선형예측함수식을 통해 장래 물 수요 추정량을 산정하였다. 물 수지 분석 결과, 안성천 유역은 인구 증가, 급격한 도시화로 인해 용수 이용량이 증가하고 있었으나 농업용수는 점차적으로 감소하고 있었다. 따라서 생활 및 공업 용수에 대한 수요를 충족하지 못해 미래 물 부족량이 증가하고 있는 것으로 확인되었으며, 본 연구에서는 물부족 해소를 위한 방안으로 광역상수도 확충과 제한급수를 제시하여 분석을 수행하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.617-618
/
2020
우리나라의 지리적인 여건상 대륙과 연결되지 않기 때문에 해상운송에 절대적으로 의존하고 있다. 해상운송에 있어 항만시설의 확보가 필요하며 대외무역의존도가 높은 우리나라의 경우 더욱 중요한 역할을 한다. 항만시설은 장기적인 항만수요예측을 통해 대규모 인프라투자를 결정하며 단기적인 예측은 항만운영의 효율성을 개선하고 항만의 경쟁력을 제고하는데 기여하므로 예측의 정확성을 높이기 위해 많은 노력이 필요하다. 본 논문에서는 딥러닝 모델 중에 하나인 LSTM(Long Short Term Memory)을 적용하여 우리나라 주요항만의 컨테이너 물동량 단기예측을 수행하여 선행연구들에서 주류를 이뤘던 ARIMA류의 시계열모델과 비교하여 예측성능을 평가할 것이다. 본 논문은 학문적으로 항만수요예측에 관한 새로운 예측모델을 제시하였다는 측면에서 의미가 있으며 실무적으로 항만수요예측에 대한 정확성을 개선하여 항만투자의사결정에 과학적인 근거로서 활용이 가능할 것으로 기대된다.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.5
/
pp.713-719
/
2009
In this paper, we develope a water demand forecasting algorithm using AR(Auto-regressive) and MLP(Multi-layer perceptron). To show effectiveness of the proposed method, we analyzed characteristics of time-series data collected in "A" purification plant at Jeon-Buk province during 2007-2008, and then performed the proposed method with various input factors selected through various analyses. As noted in experimental results, the performance of three types model such as multi-regressive, AR(Auto-regressive), and AR+MLP(Auto-regressive + Multi-layer perceptron) show 5.1%, 3.8%, and 3.6% with respect to MAPE(Mean Absolute Percentage Error), respectively. Thus, it is noted that the proposed method can be used to predict short-term water demand for the efficient operation of a water purification plant.
This paper develops a model to forecast container volumes of all Korean seaports using a Seasonal ARIMA (Autoregressive Integrated Moving Average) technique with the quarterly data from the year of 1994 to 2010. In order to verify forecasting accuracy of the SARIMA model, this paper compares the predicted volumes resulted from the SARIMA model with the actual volumes. Also, the forecasted volumes of the SARIMA model is compared to those of an ARIMA model to demonstrate the superiority as a forecasting model. The results showed the SARIMA Model has a high level of forecasting accuracy and is superior to the ARIMA model in terms of estimation accuracy. Most of the previous research regarding the container-volume forecasting of seaports have been focussed on long-term forecasting with mainly monthly and yearly volume data. Therefore, this paper suggests a new methodology that forecasts shot-term demand with quarterly container volumes and demonstrates the superiority of the SARIMA model as a forecasting methodology.
1978년은 우리가 미처 상상도 하지 못했던 축산물을 소비하여 이를 폭발적인 수요증가라는 말로 표현하였고, 쇠고기 돼지고기를 비롯하여 분유까지를 대량 수입하지 않을 수 없게 만들었고 금년의 수요 둔화는 다시한번 업계를 불황으로 이끌고 말았다. 장단기 축산물의 수요를 정확히 추정하는 길만이 안정된 축산을 이룩하는 기초가 됨은 두말할 필요도 없다. 그간 각 연구기관의 축산물 수요추정이 있었으나 이번 국내 가장 권위지인 계간 농촌경제에 발표된 축산물의 수요추정을 계제하여 장단기 사업계획 수립에 도움이 되도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.