• Title/Summary/Keyword: 물팬텀

Search Result 156, Processing Time 0.02 seconds

Application of IAEA TRS-398 Protocol to Gamma Knife Model C (감마나이프 C모델에 대한 IAEA TRS-398 프로토콜의 적용)

  • Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.194-201
    • /
    • 2007
  • Although Gamma Knife irradiates much more radiation in a single session than conventional radiotherapy, there were only a few studies to measure absolute dose of a Gamma Knife. Especially, there is no report of application of International Atomic Energy Agency (IAEA) TRS-398 which requires to use a water phantom in radiation measurement to Gamma Knife. In this article, the authors reported results of the experiments to measure the absorbed dose to water of a Gamma Knife Model C using the IAEA TRS-398 protocol. The absorbed dose to water of a Gamma Knife model C was measured using a water phantom under conditions as close as possible to the IAEA TRS-398 protocol. The obtained results were compared with values measured using the plastic phantom provided by the Gamma Knife manufacturer. Two Capintec PR-05P mini-chambers and a PTW UNIDOS electrometer were used in measurements. The absorbed dose to water of a Gamma Knife model C inside the water phantom was 1.38% larger than that of the plastic phantom. The current protocol provided by the manufacturer has an intrinsic error stems from the fact that a plastic phantom is used instead of a water phantom. In conclusion, it is not possible to fully apply IAEA TRS-398 to measurement of absorbed dose of a Gamma Knife. Instead, it can be a practical choice to build a new protocol for Gamma Knife or to provide a conversion factor from a water phantom to the plastic phantom. The conversion factor can be obtained in one or two standard laboratories.

  • PDF

Dose Evaluation of Three-Dimensional Small Animal Phantom with Film Dosimetry (필름계측을 이용한 3차원 소동물 팬텀의 선량평가)

  • Han, Su Chul;Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2017
  • The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom.

10 MV X-ray Beam Dosimetry by Water and White Polystyrene Phantom (물과 백색폴리스티렌 팬텀에 의한 10 MV X-선 빔 선량계측)

  • Kim, Jong-Eon;Cha, Byung-Youl;Kang, Sang-Sik;Park, Ji-Koon;Sin, Jeong-Wook;Kim, So-Yeong;Jo, Seong-Ho;Son, Dae-Woong;Choi, Chi-Won;Park, Chang-Hee;Yoon, Chun-Sil;Lee, Jong-Duk;Park, Byung-Do
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • The purpose of this study is to get the correction factor to correct the measured values of the absolute absorbed dose proportional to the water equivalent depth. The measurement conditions in white polystyrene and water phantoms for 10MV X-ray beam are that the distance of source to center of ionization chamber is fixed at SAD 100 cm, the field sizes are $10{\times}10\;cm^2$, $20{\times}20\;cm^2$ and the depths are 2.3 cm, 5 cm, 10 cm, and 15 cm, respectively. The mean value of ionization was obtained by three times measurements in each field size and depths after delivering 100 MU from linear accelerator with output of 400 MU per min to the two phantoms. The correction factor and the percentage deviation in TPR were obtained below 0.97% and 0.53%, respectively. Therefore, we can get high accuracy by using the correction factor and the percentage deviation in TPR in measuring the absolute absorbed dose with the solid water equivalent phantom.

  • PDF

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정 조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • 김회남;박성용;서태석;권수일;윤세철
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.87-102
    • /
    • 1997
  • The absolute absorbed dose can be determined according to the measurement conditions; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of 10cm $\times$ 10cm field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations of phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG21 and IAEA protocol. The differences between two protocols are within 1% while the average value of IAEA protocol was 0.5% smaller than TG21 protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within 1%, but individual discrepancies are in the range of - 2.5% to 1.2% depending upon the choice of measurement combination. The largest discrepancy of - 2.5% was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coeficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, it shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Study of Doppler Fluid Effects of Carbonated Water in a Bi-directional Flow Phantom Model (양방향 흐름 팬텀 모델에서 탄산수의 도플러 유체 효과 연구)

  • Ji-Hye Kim;Yeong-Cheol Heo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.83-91
    • /
    • 2024
  • The purpose of this study was to determine the doppler fluid effects of carbonated water (CBW) in a bi-directional flow phantom model. A bi-directional flow phantom model was chosen to realize arterial and venous flow, and the structure of the inner and outer tanks allowed for fluid circulation and also made the size of the phantom small. Carbonated water (CBW), salt fluid (SAF), sugar fluid (SUF), and distilled water (DW) were used as fluids, and ultrasound scans were performed at depths of 1.5 cm and 3.0 cm from the surface of the tank, using B-mode and color Doppler effects. All fluids tested showed color Doppler effects, but CBW had the highest doppler shift and the least variation with depth. In conclusion, we determined that CBW was the most suitable fluid to be used as a doppler fluid and confirmed that the bubbles dissolved in CBW act as doppler scatterers, just like red blood cells inside human blood. Therefore, it is possible that CBW can be used as a blood-mimicking fluid in doppler ultrasound phantoms through further research, and this study will provide basic data.

Development of the EGS4 Control Code to Calculate the Dose Distributions in a Strong Magnetic Field (자기장이 인가된 물팬텀 속의 전자선 선량분포 계산을 위한 EGS4 제어코드의 개발과 응용)

  • 정동혁;오영기;신교철;김진기;김기환;김정기;이강규;문성록;김성규
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this work we developed a EGS4 control code to calculate the dose distributions for high energy electron beams in water phantom applied longitudinal magnetic field. We reviewed the electron's motion in magnetic field and delivered equations for direction changs of the electron by the external magnetic field. The mathematical results are inserted into the EGS4 code system to account for the presence of external magnetic fields in phantom. The electron pencil beam paths of 6 MeV in water phantom are calculated for magnetic fields of 1-3 T and the dose distributions for a field of 1.0 cm in diameter are calculated for magnetic fields of 0.6-1 T using the code. From the results of path calculations we found that the lateral ranges of the electrons are reduced in the magnetic field of 3 T. For a field of 1 cm diameter and a magnetic field of 1 T, the small dose enhancement near the range of the electrons on the depth dose and the penumbra reduction of 0.15 cm on the beam profile are observed. We discussed and evaluated the results from the theoretical concepts.

  • PDF

Analysis of the Dental Implants MRI Artifacts by Using the ACR Phantom (ACR 팬텀을 이용한 치아 임플란트 자기공명영상 인공물 분석)

  • Shin, Woon-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.629-635
    • /
    • 2016
  • ACR phantom for quality control of magnetic resonance imaging equipment can evaluate magnetic resonance imaging picture quality through various structures within the phantom. In this study, percent Signal Ghosting and Slice position accuracy of imaging could be analyzed by attaching implant and the wire for correction of tooth using ACR phantom in Head coil of 3.0T equipment. In the T1 weighted imaging of the first slice and the eleventh slice of implant, the slice position accuracy appeared to be good in ingress bandwidth 300, and it was good in ingress bandwidth 130 when wire for correction was attached. Percent Signal Ghosting in the seventh slice of SE T1 weighted imaging, implant and wire for correction added all appeared to be good when ingress bandwidth was 230. It is thought that in case of implant dental prosthesis patients in brain exam using magnetic resonance imaging, optimum image can be obtained by changing ingress bandwidth.

Estimation of Computed Tomography Dose in Various Phantom Shapes and Compositions (다양한 팬텀 모양 및 재질에 따른 전산화단층촬영장치 선량 평가)

  • Lee, Chang-Lae
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The $CTDI_{100center}$ values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but $CTDI_{100center}$ values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom $CTDI_{100center}$ values were relatively low as the material density increased. However, in the case of Polyethylene, the $CTDI_{100center}$ value was higher than that of PMMA at diameters exceeding 15 cm ($CTDI_{100center}$ : 35.0 mGy). And a diameter greater than 30 cm ($CTDI_{100center}$ : 17.7 mGy) showed more $CTDI_{100center}$ than Water. We have used limited phantoms to evaluate CT doses. In this study, $CTDI_{100center}$ values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

A Study on the Minimization of Spatial Error in 3-Demensional Neuronavigator (3차원 영상지원 뇌수술장비의 공간오차 최소화에 관한 연구)

  • 이동준;다영신;이정교
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 1997
  • 3-dimensional Neuronavigator, Viewing Wand(ISG Technologies, Toronto, Cannda) is the surgery aid equipment for real time image (CT or MRI) guided surgery. The assurance of spatial accuracy of this system is important for clinical application. In this study, we have designed the acrylic brain phantom and measured the spatial error with that phantom. The phantom has designed to have capability to simulate image guided surgery. The phantom has 22 vertical rods whose diameters are 5mm and each rods has different length. CT scans were performed by 2.0mm slice and reconstructed for 3-Dimensional analysis. End point of rods can be obtained using reconstructed 3- Dimensional images and they are compared to actual position data. Average deviation was less than 2mm for various situations. Spatial error of Viewing Wand is acceptable in the clinical points of view, while cosmetics of the software needs to be modified to more user friend. Better accuracy can be expected when we apply the mixed fiducial fit registration and surface fit registration method. And even better results can be obtained if registration points distributed even and symetric around the target.

  • PDF

Calculation of Trajectory for High Energy Electrons in Water under Strong Magnetic Fields (강자기장이 인가된 물 속에서 고에너지 전자의 궤적 계산)

  • Kim Jeung Kee;Oh Young Kee;Shin Kyo Chul;Kim Ki Hwan;Kim Jhin Kee;Kim Sung Kyu;Ro Tae Ik;Kim Jin Young;Ji Young Hun;Jeong Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.121-127
    • /
    • 2004
  • The trajectories for high-energy electrons in water under magnetic fields were calculated approximately by numerical method. A differential equation for electrons under magnetic field was built and the calculation code was devised by Euler method. Using the code, the trajectories for electrons with energies of 3, 5, 10, and 15 MeV in water were calculated in the presence of magnetic fields parallel and perpendicular to the incident electrons. Since we considered only the energy loss and the directional change for primary electrons, there are errors in this calculation. However, based on the results we were able to explain the variation of dose distributions by the external magnetic fields in water.

  • PDF