DOI QR코드

DOI QR Code

Dose Evaluation of Three-Dimensional Small Animal Phantom with Film Dosimetry

필름계측을 이용한 3차원 소동물 팬텀의 선량평가

  • Han, Su Chul (Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Seungwoo (Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences)
  • 한수철 (한국원자력의학원 방사선기기부) ;
  • 박승우 (한국원자력의학원 방사선기기부)
  • Received : 2017.03.03
  • Accepted : 2017.03.21
  • Published : 2017.03.31

Abstract

The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom.

소동물을 대상으로 방사선을 이용한 비임상 연구에서 소동물 선량평가의 역할은 계속적으로 증가하고 있다. 본 연구는 최근 들어 사용 및 연구가 계속적으로 증가하고 있는 3차원 프린터를 이용하여 3차원 소동물 팬텀을 제작하였으며, 제작된 소동물 팬텀을 대상으로 필름계측을 이용하여 감마선 조사 시 소동물 팬텀내 흡수되는 선량을 평가하였다. 선행적으로 3차원 소동물 팬텀 제작에 사용된 재료에서 필름에 대한 방사선의 반응 관계식을 획득하였으며, 방사선치료 시 조직등가물질로 사용되고 있는 bolus와 비교하였다. 0.5 Gy에서 6 Gy까지 감마선을 조사하였을 때, 0.5 Gy의 선량을 제외하고 1% 이내의 작은 차이가 있음을 확인하였다. 또한 제작된 3차원 소동물 팬텀 내에 필름을 삽입하여 5 Gy의 선량을 조사하였을 때, 조사된 선량과 필름을 통하여 계산된 선량과의 차이는 2% 이내의 차이였다. 본 연구를 기반으로 실제 소동물을 대상으로, 3차원 소동물 팬텀을 제작하여 선량을 평가한다면, 소동물을 대상으로 방사선 조사하는 비임상 연구 선량에 대한 신뢰성을 높여 줄 수 있을 것이라 사료된다.

Keywords

References

  1. Khan J, Tofilon PJ, Camphausen K: Preclinical models in radiation oncology, Radit, Oncol,7, 223, 2012 https://doi.org/10.1186/1748-717X-7-223
  2. Verhaegen Frank, Granton Patrick, Tryggestad Erik: Small animal radiotherapy research platforms, Phys. Med. Biol. 56, R55-R83, 2011 https://doi.org/10.1088/0031-9155/56/12/R01
  3. Van Hoof Stefan J, Granton Patrick, Verhaegen Frank: Development and validation of a treatment planning system for small animal radiotherapy: SmART-Plan, Radiotherapy and Oncology, 109, 361-366, 2013 https://doi.org/10.1016/j.radonc.2013.10.003
  4. Aldelaijan S, Nobah A, Alsbeih G: Dosimetry of biological irradiation using radiochromic films, Phys. Med. Biol, 58, 3177-3198, 2013 https://doi.org/10.1088/0031-9155/58/10/3177
  5. Larsson E, Ligungberg M, Martensson L et al: Use of Monte Carlo simulation with a realistic rat phantom for examining the correlation between hematopoietic system response and red marrow absorbed dose in Brown Norway rats undergoing radionuclide therapy with (177)Lu-and (90)Y-BR96 mAsbs, Med. phys. 39, 4434-4443, 2012 https://doi.org/10.1118/1.4730499
  6. Vrineaud JM, Ljungberg M, Martessson L et al: Aplication of the optically stimulated Luminescence (OSL) technique for mouse dosimetry in micro-CT imaging, Med. phys. 40, 122102, 2013 https://doi.org/10.1118/1.4829499
  7. Perks JR, Lucero S, Monjazeb AM et al: Anthropmorphic phantoms for confirmation of linear accelerator-based small animal irradiation, Cureus, 7, e254, 2015
  8. Polyjet Technologysytratasys, Stratasys.com http//www.stratasys.com, 2016
  9. Materialise Mimics Innovation Suite[computer program]. Version 12.0 Leuven. Belgium: Materialise. Inc. http://biomedical.materialise.com
  10. Aland T. Kairn T, Kenny J: Evaluation of a Gafchromic EBT2 film dosimetry system for radiotherapy quality assurance, Australas. Phys. Eng. Sci. Med.. 34, 251-260, 2011 https://doi.org/10.1007/s13246-011-0072-6
  11. Laycock SD, Hulse M, Scarse CD et al: Torwads the production of radiotherapy treatment shills on 3-D printers using data derived from DICOM CT and MRI: Preclinical feasibility studies, J Radiother. Pract. 14, 92-98, 2015 https://doi.org/10.1017/S1460396914000326
  12. Jung Jinhong, Song Si Yeol, Yoon Sang Min et al: Verification of accuracy of CyberKnife tumortracking radiation therapy using patient specific lung phantom, Int J Radiat. Oncol. Biol. Phys. 92, 745-753, 2015 https://doi.org/10.1016/j.ijrobp.2015.02.055
  13. Kim Shin-Wook, Shin hun-Joo, Kay chul Seung, Son Seok Hyun: A customized bolus produced using a 3-Dimenstional printer for radiotherapy, PLOSOne, 9, e110748, 2014 https://doi.org/10.1371/journal.pone.0110748
  14. Bache Steven T, Juang Titanial Juang, Belly Matthew et al: Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters, Med. Phys. 42, 846-855, 2015 https://doi.org/10.1118/1.4905489