• 제목/요약/키워드: 물체 검출

검색결과 679건 처리시간 0.033초

OWL OS(운영 및 제어시스템) 개발

  • 박선엽;임홍서;조중현;배영호;박영식;문홍규;최영준;박장현;김태훈;박희선;진호;이정호;금강훈;최진;김재혁
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.215.2-215.2
    • /
    • 2012
  • 우주물체 전자광학 감시체계(OWL: Optical Wide-field Patrol)는 전세계에 5개의 50cm급 자동 망원경과 1개의 2m급 망원경을 설치하여 인공위성의 궤도 정보를 얻는 시스템이다. 이 시스템을 운영하게 될 소프트웨어는 크게 두 부분으로 나누어지는데, 해외 원격지에 설치되는 관측소의 50cm급 망원경의 마운트와 검출기, 돔, 기상 측기, 전원 제어 장치를 통합하여 무인으로 관측을 수행하고 그 결과를 본부에 보고하며, 각 시스템을 안전하게 보호하는 기능을 갖는 SOS(Site Operating System)와, 스케줄러에 의하여 각 관측소에 필요한 관측 일정을 작성하여 전달하고 관측소의 운영 현황을 모니터링 하는 NOS(Network Operating System)로 구성된다. OWL OS를 위하여, 시스템을 전반적으로 운영하는 운영 시나리오를 설계하였으며, 이 시나리오에는 기상조건 악화와 장비 오류 등의 경우에 시스템을 보호하고 상황을 즉시 보고하는 비상사태 대처 방안을 포함하였다. 이러한 운영의 모든 단계에서 주기적 또는 필요시 로그 기록이 남도록 하였으며, 이 로그 기록을 바탕으로 사용자가 원할 때에 본부에서 운영상황을 요약하여 보여주는 각종 통계 자료를 작성하여 확인할 수 있도록 하였다.

  • PDF

다중 판별기를 이용한 비디오 행동 인식 (Human Action Recognition in Videos using Multi-classifiers)

  • 김세민;노용만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 추계학술대회
    • /
    • pp.54-57
    • /
    • 2013
  • 최근 다양한 방송 및 영상 분야에서 사람의 행동을 인식하여는 연구들이 많이 이루어지고 있다. 영상은 다양한 형태를 가질 수 있기 때문에 제약된 환경에서 유용한 템플릿 방법들보다 특징점에 기반한 연구들이 실제 사용자 환경에서 더욱 관심을 받고 있다. 특징점 기반의 연구들은 영상에서 움직임이 발생하는 지점들을 찾아내어 이를 3차원 패치들로 생성한다. 이를 이용하여 영상의 움직임을 히스토그램에 기반한 descriptor(서술자)로 표현하고 학습기반의 판별기(classifier)로 최종적으로 영상 내에 존재하는 행동들을 인식하였다. 그러나 단일 판별기를 이용한 다양한 영상 인식을 수용하기에는 힘들다. 최근에 이를 개선하기 위하여 다중 판별기를 활용한 연구들이 영상 판별 및 물체 검출 영역에서 사용되고 있다. 따라서 본 논문에서는 행동 인식을 위하여 support vector machine과 spare representation을 이용한 decision-level fusion 방법을 제안하고자 한다. 제안된 논문의 방법은 영상에서 특징점 기반의 descriptor를 추출하고 이를 각각의 판별기를 통하여 판별 결과들을 획득한다. 이 후 학습단계에서 획득된 가중치를 활용하여 각 결과들을 융합하여 최종 결과를 도출하였다. 본 논문에 실험에서 제안된 방법은 기존의 융합 방법보다 높은 행동 인식 성능을 보여 주었다.

  • PDF

영구자석을 이용한 비파괴 검사기의 결함검출 기법에 관한 연구 (A study of the defect detecting method in the NDT gauge using the permanent Magnetics)

  • 박일환;조지응;조봉균;이근보;김덕건;홍용환;박치용;박관수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1723-1724
    • /
    • 2006
  • 자기누설탐상법은 비파피검사 방법의 하나로 대상물체를 외부에서 착자시켜 함이 발생할 경우에 결함부위에서 자기누설이 발생하도록 하여, 누설된 자기장을 측정하여 결함의 유무와 크기 등을 판정하는 시스템이다. 본 논문에서는 MFL 방식의 범용 NDT 검사기의 개발을 위해 영구자석을 이용하여 소형 비파괴 검사기를 설계하고, 3차원 유한요소법을 이용하여 해석하고 실제 데이터를 측정하여 그 결과를 비교 분석하였다.

  • PDF

시간 평균 ESPI를 이용한 진동 물체의 공진 주파수 검출 신뢰도 검증에 대한 연구 (A Study on Reliability Verification of Resonance Frequency Detection of Vibration Object using Time-average ESPI)

  • 홍경민;유원재;강영준;이동환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.930-933
    • /
    • 2005
  • Non-destructive inspection techniques using laser have been breading their application areas as well as growing their measurement skills together with the rapid development of circumferential technology like fiber optics. computer and image processing The ESPI technique is already on the stage of on-line testing with commercial products in developed country nations. Especially, this technique is expected to be applied to the nuclear industry, automobile and aerospace because it is proper for the vibration measurement and it can be applied to objects of a high temperature. This paper describes the use of the ESPI system for measuring vibration patterns on the reflecting objects. Using this system, high-quality Jo fringes for identifying mode shapes are displayed. A bias vibration is introduced into the reference beam to shift the Jo fringes so that fringe shift algorithms can be used to determine vibration amplitude. Using this method. amplitude fields for vibrating objects were obtained directly from the time-average interferometer recorded by the ESPI system.

  • PDF

물체 형상인식 알고리즘을 이용한 물고기 로봇 위치 검출에 관한 연구 (A Study of Detecting The Fish Robot Position Using The Object Boundary Algorithm)

  • 아마르나 바르마 앙가니;강민정;신규재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1350-1353
    • /
    • 2015
  • In this paper, we have researched about how to detect the fish robot objects in aquarium. We had used designed fish robots DOMI ver1.0, which had researched and developed for aquarium underwater robot. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. We are planned to non-external equipment to find the position and manipulated the position using creating boundary to fish robot to detect the fish robot objects. Also, we focused the detecting fish robot in aquarium by using boundary algorithm. In order to the find the object boundary, it is filtering the video frame to picture frames and changing the RGB to gray. Then, applied the boundary algorithm stand of equations which operates the boundary for objects. We called these procedures is kind of image processing that can distinguish the objects and background in the captured video frames. It was confirmed that excellent performance in the field test such as filtering image, object detecting and boundary algorithm.

안개 발생 시 원적외선 표면영상유속계의 적용성 검토 (Applicability of Ray Surface Image Velocimeter using Far Infrared Ray in Fog Condition)

  • 배인혁;김서준;윤병만;류권규
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.70-70
    • /
    • 2017
  • 영상처리 기법을 이용한 유속 측정 방법인 표면영상유속계는 비접촉식으로 간편하게 유속을 측정할 수 있다는 장점이 있지만 영상 내 추적자의 움직임을 식별하기 어려운 야간의 경우와 새벽의 안개가 발생하는 경우에 대한 유속 측정의 어려움이 있었다. 표면영상유속계를 이용한 야간 유속 측정은 조명과 적외선 카메라를 이용하여 수표면을 가시화하는 방법을 통해 현장 적용성을 검증하였으나, 안개 발생 상황에서는 적용하기 어렵다는 한계가 있었다. 야간과 안개 등의 한계를 동시에 극복하기 위한 방법으로 원적외선 카메라를 이용한 연구들이 이루어지고 있지만 아직 시작단계이고, 원적외선의 경우 주변 환경 변화에 따라 물체의 표면온도가 검출되는 파장이 달라져 영상의 품질에 차이가 발생하기 때문에 이에 대한 다양한 실험적 연구가 필요하다. 이에 본 연구에서는 야외 개수로에서 드라이아이스를 이용하여 안개 조건을 재현하고, 다양한 흐름 조건에서 원적외선 영상을 이용한 표면유속 측정 적용성을 검토하였다. 안개가 발생하는 경우 원적외선 표면영상 유속계를 적용한 결과 안개가 없을 때의 유속 측정 결과와 거의 일치하는 것을 확인하였다. 따라서 원적외선 카메라를 이용한 표면유속 측정 방법은 야간과 안개가 발생하는 상황에 모두 사용하기에 적합한 것을 나타났다. 향후 하천 유량조사에 원적외선 카메라를 활용한다면 기존의 표면영상유속계의 비가시 환경에 대한 한계들을 많은 부분 극복할 수 있을 것으로 기대한다.

  • PDF

딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정 (Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning)

  • 김현우;박상현
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

저조도 환경 기반 색상 잡음 검출 및 영상 복원 (Color Noise Detection and Image Restoration for Low Illumination Environment)

  • 오교혁;이재린;전병우
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.88-98
    • /
    • 2021
  • CCTV를 사용하여 저조도와 같은 열악한 환경에서도 범죄 예방 및 특정 대상을 정확히 확인하는 것이 최근 더욱 중요해지고 있다. 저조도 환경하의 CCTV 응용에서는 눈에 거슬리지 않는 근적외선 조명을 이용하여 영상을 획득하는데, 이 경우, 비록 사람 눈에는 어두운 저조도 환경이지만 근적외선 조명을 사용하기 때문에 영상의 상세 텍스처 정보를 얻을 수 있는 장점은 있지만, CCTV 영상내의 물체 판별이나 인물 확인을 위하여 매우 요긴한 정보인 색상 정보는 얻기 힘들다는 단점이 있다. 본 논문에서는 저조도 환경에서 근적외선 조명을 사용하여 얻은 CCTV 영상으로부터 DCGAN을 사용하여 색상정보를 획득하는 방법과 이때 재구성된 색상 영상에 생기는 색상 잡음을 제거하는 방법을 제시한다.

Knowledge Distillation 계층 변화에 따른 Anchor Free 물체 검출 Continual Learning (Anchor Free Object Detection Continual Learning According to Knowledge Distillation Layer Changes)

  • 강수명;정대원;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제25권4호
    • /
    • pp.600-609
    • /
    • 2022
  • In supervised learning, labeling of all data is essential, and in particular, in the case of object detection, all objects belonging to the image and to be learned have to be labeled. Due to this problem, continual learning has recently attracted attention, which is a way to accumulate previous learned knowledge and minimize catastrophic forgetting. In this study, a continaul learning model is proposed that accumulates previously learned knowledge and enables learning about new objects. The proposed method is applied to CenterNet, which is a object detection model of anchor-free manner. In our study, the model is applied the knowledge distillation algorithm to be enabled continual learning. In particular, it is assumed that all output layers of the model have to be distilled in order to be most effective. Compared to LWF, the proposed method is increased by 23.3%p mAP in 19+1 scenarios, and also rised by 28.8%p in 15+5 scenarios.

해상 객체 검출 고속 처리를 위한 영상 전처리 알고리즘 설계와 딥러닝 기반의 통합 시스템 (Design of Video Pre-processing Algorithm for High-speed Processing of Maritime Object Detection System and Deep Learning based Integrated System)

  • 송현학;이효찬;이성주;전호석;임태호
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.117-126
    • /
    • 2020
  • 해상 객체 인식은 자율운항선박(MASS)의 지능형 보조 시스템으로써, 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 확인하던 정보를 컴퓨터를 통해 자동으로 인식하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 선박 주변의 물체를 인식하는 방법으로 기존에는 레이더나 소나와 같은 장치로부터 수집된 정보를 통해 확인하였지만, 인공지능의 기술이 발달하면서 선박 지능형 CCTV를 통해 운항 항로에 있는 다양한 부유물을 인식하는 것이 가능하다. 하지만, 자율 선박의 다양한 요구사항과 복잡성 때문에 영상 데이터의 처리속도가 느려지게 된다면 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 이러한 문제를 해결하고자 본 논문에서는 해상 객체를 검출하는 데 있어 영상 데이터의 연산량을 최소화하여 처리속도를 높이기 위한 연구를 진행하였다. 해상 객체 인식의 관심 영역을 확보하기 위해서는 일반적으로 수평선을 찾는데 기존 연구들은 허프 변환 알고리즘을 활용하지만 본 논문에서는 속도를 개선하기 위해 이진화 알고리즘을 최적화하여 실제 객체의 위치와 유사한 영역을 찾는 새로운 방법을 제안한다. 또한, 제안하는 방법의 유용성을 증명하기 위해 딥러닝 CNN을 활용하여 해상 객체 인식 시스템을 구현함으로써 알고리즘의 성능을 평가하였다. 제안하는 알고리즘은 기존 방법의 인식 정확도를 유지하면서 약 4배 이상의 빠른 성능을 얻을 수 있었다.