• Title/Summary/Keyword: 물질 전달

Search Result 1,641, Processing Time 0.034 seconds

A Study on Heat and Mass Transfer in Porous Media (다공질 물질 속에서의 열 및 물질 전달에 대한 연구)

  • Chung, Mo
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.39-51
    • /
    • 1995
  • A numerical scheme based on a coordinate transform into stream function-velocity potential is proposed to solve heat and momentum transfer in porous media with phase change. A significant simplification of both computational domain and governing equations can be achieved by the transform. The dispersion term in the flow through porous media, which is important at the phase change interface, can be successfully incorporated into the numerical scheme without introducing any further computational complications.

  • PDF

Oxidation of Phenol Using Ozone-containing Microbubbles Formed by Electrostatic Spray (전기장에 의해 생성된 미세기포를 이용한 페놀의 오존산화)

  • Shin, Won-Tae;Jung, Yoo-Jin;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1292-1297
    • /
    • 2005
  • The use of ozone in water and wastewater treatment systems has been known to be a process that is limited by mass transfer. The most effective way to overcome this limitation is to increase the interfacial area available for mass transfer by decreasing the size of the ozone gas bubbles that are dispersed in solution. Electrostatic spraying(ES) of ozone into water was investigated in this work as a method of increasing the rate of mass transfer of ozone into a solution and thereby increasing the rate of phenol oxidation. Results were obtained for ES at input power levels ranging from 0 to 4 kV and compared with two different pore-size bubble diffusers($10{\sim}15{\mu}m$ and $40{\sim}60{\mu}m$). It was determined that the rate of mass transfer could be increased by as much as 40% when the applied voltage was increased from 0 to 4 kV as a result of the smaller bubbles generated by ES. In addition, ES was shown to be more effective than the medium-pore-size($10{\sim}15{\mu}m$) bubble diffuser and the best results were achieved at low gas flow rates.

The Mechanism of Overtraining Syndrome and the Role of Brain Neurotransmitters and Neuromodulators (과훈련 증후군의 기전 및 뇌 신경전달물질과 신경조절물질의 역할)

  • Kim, Han-Cheol;Kim, Woo-Cheol;Kim, Sung-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.461-476
    • /
    • 2017
  • The purpose of this study was to investigate the existing theories related to overtraining syndrome and to examine the mechanism of overtraining syndrome from the viewpoint of brain science by examining domestic and foreign literature related to the relationship between overtraining syndrome and brain neurotransmitter. The aim of this paper is to provide basic data that can improve the understanding of the mechanism of overtraining syndrome and the role of neurotransmitters and neuromodulators. The results of this study and a number of hypotheses about the overtraining syndrome were proposed, each with strengths and weaknesses. Similar symptoms that occur when the concentration of serotonin in the neurotransmitter increases are related to signs and symptoms of overtraining syndrome. However, it has not been validated to date because it can not distinguish the mechanism of the mediator between the central nervous system and the peripheral nerves. This study suggests that the mechanism of overtraining syndrome will provide important basic information to understand the complex causes of overtraining syndrome through the interaction of existing theory and brain neurotransmitter. Although there has been a lack of studies on the mechanism of overtraining syndrome and brain neurotransmitters so far, we hope that this study will provide an opportunity for more and more people to broaden their understanding of overtraining syndromes.

Heat Transfer by Heat Generation in Electrochemical Reaction of PEMFC (고분자 전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성)

  • Han, Sang-Seok;Lee, Pil-Hyong;Lee, Jae-Young;Park, Chang-Soo;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.273-283
    • /
    • 2008
  • GDL(Gas Diffusion Layer) is one of the main components of PEM fuel cell. It transports reactants from the channel to the catalyst and removes reaction products from the catalyst to the channels in the flow filed plate. It is known that higher permeability of GDL can make it possible to enhance the gas transport through GDL, leading to better performance. And MEA's temperature is determined by gas and heat transport. In this paper, three dimensional numerical simulation of PEM fuel cell of parallel channel and serpentine channel by the permeability of GDL is presented to analysis heat and mass transfer characteristics using a FLUENT modified to include the electrochemical behavior. Results show that in the case of parallel channel, performance variation with change of permeability of GDL was not so much. This is thought because mass transfer is carried out by diffusion mechanism in parallel channel. Also, in the case of serpentine channel, higher GDL permeability resulted in better performance of PEM fuel cell because of convection flow though GDL. And mass transfer process is changed from convection to diffusion when the permeability becomes low.

Effects of Pluronic F-68 and Oxygen Vectors on the Cell Growth of Angelica gigas Nakai in Aqueous Two-Phase System (수성이상계에서 Pluronic F-68과 산소전달물질이 참당귀 현탁세포 증식에 미치는 영향)

  • Cheon, Su-Hwan;Lee, Kyoung-Hoon;Kwon, Jun-Young;Ryu, Hyun-Nam;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.207-212
    • /
    • 2007
  • Pluronic F-68 and oxygen vectors were applied to increase the cell growth of Angelica gigas Nakai in aqueous two-phase system (ATPS). ATPS was composed of 3.6% (w/v) polyethylene glycol (PEG) 20,000 and 2.8% (w/v) crude dextran. n-Hexadecane, n-dodecane and FC-40 were used as oxygen vectors to enhance the oxygen transfer in ATPS. With 2$\sim$10 g/L of Pluronic F-68, addition of of n-hexadecane and FC-40 significantly enhanced the oxygen transfer rate as well as the maximum cell mass in a medium with ATPS. However, n-dodecane reduced the cell growth in all treatments. Maximum cell densities were increased up to 27.5% with 10 g/L of Pluronic F-68 and up to 40.2% with 8% (v/v) n-hexadecane compared to those of the controls without Pluronic F-68 and oxygen vectors. It was confirmed that the cell growth could be increased in ATPS using n-hexadecane.

Effect of Operating Parameters on Microbial Desulfurization of Coal by Acidithiobacillus ferrooxidans. (Acidithiobacillus ferrooxidans에 의한 생물학적 석탄탈황에 미치는 조업인자의 영향)

    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.400-407
    • /
    • 2003
  • In microbial coal desulfurization process (MCDP) by using Acidithiobacillus ferrooxidans, the effect of process variables on pyritic sulfur removal efficiency has been investigated. The inhibitory effect of toxic materials contained in coal matrix on the activity of desulfurizing bacteria have been evaluated in coal extracts, and the results showed that the method was useful to evaluate the applicability of a coal which is to be desulfurization to MCDP. The removal efficiency increased with decreasing particle size and decreases with increasing pulp density, but has no significant influence of particle size and pup densities at high pulp densities over 20 wt%. The mass transfers of gaseous nutrients such as oxygen and carbon dioxide into coal slurry with various pulp densities and coal particle size has been studied in an airlift bioreactor. Mass transfer coefficient was independent of pulp density in coal slurry with fine particle below 175 $\mu\textrm{m}$, but significantly decreased with increasing pulp density over 225 $\mu\textrm{m}$. The coal particles over 575 $\mu\textrm{m}$ were significantly settled to the bottom of bioreactor resulting in poor mixing. Considering mass transfer, pulp density and coal mixing, an optimal size of coal particle for the microbial coal desulfurization process seems to be about 500 $\mu\textrm{m}$.

직접 접촉방식 열 및 물질교환장치의 전달현상(III)

  • 김석현
    • Journal of the KSME
    • /
    • v.26 no.1
    • /
    • pp.31-35
    • /
    • 1986
  • 물질전달이 포함되는 교환기의 설계목표도 단순열교환기의 경우와 마찬가지로 여러 가지 주어진 제약조건(constraints; 예를들면 교환기의 제원이나 유체유동에 필요한 압력부하등)을 만족시키 면서 전달능력의 단위(number of transfer units, 이하 $N_{tu}$ 로 약함)를 최대로 해 주는데 있다. 그러나 교환장치들의 유형이나 형상에 따라 이같은 동일 목적을 위한 과정은 각양각색 이다. 본장에서는 직접 접촉식 교환기의 많은 종류중 물의 직접증발을 이용한 단열가습장치와 고체건조제 단열제습장치등 두가지의 해석과정을 예시하려고 한다.

  • PDF

Effect of Free Stream Turbulence Intensity on Heat/Mass Transfer Characteristics Around a Film Cooling Hole (주유동의 난류강도가 막냉각홀 주위의 열/물질전달 특성에 미치는 영향)

  • 이동호;김병기;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.56-63
    • /
    • 1998
  • The present study investigated local heat transfer characteristics around a film cooling hole with variations of free stream turbulence intensity The film cooling jet is injected through a single hole inclined at $30^{\cire}$ to the surface and laterally at $45^{\cire}$ for the blowing rates of 0.5, 1.0 and 2.0. Turbulence generating grids are used at upstream of the film cooling hole to change the turbulence intensity of free stream. Free stream turbulence intensity without grids is 0.5%. Two different turbulence generating grid is installed at different at locations upstream of the film cooling hole so that turbulence intensity of free stream varies from 3% to 10%. The naphthalene sublimation technique has been employed to determine local heat/ mass transfer coefficients. With low free stream turbulence intensity, heat/mass transfer augmented area by coolant or free stream is distinguished evidently. However, when free stream turbulence intensity is high, heat transfer is enhanced in all region and heat transfer enhanced regions are not clearly divided due to vigorous mixing of coolant and free stream. The peak values of heat/mass coefficients are decreased and the distributions of heat/mass transfer coefficients are more uniform with high turbulence intensity. The effect of turbulence intensity on heat transfer characteristics is more evident as blowing rate is higher.

  • PDF

Prediction on heat and mass transfer coefficients in a packed layer of a regenerator with a solar desiccant cooling system (태양열제습냉방시스템 중 재생기의 충진층 내 열물질 전달계수에 관한 예측)

  • Eflita, Yohana;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.36-42
    • /
    • 2010
  • 본 논문은 태양열이용 냉난방시스템 중에서 실제로 액체흡수제를 재생하는 재생탑 내의 충진층에 있어서의 열 및 물질전달의 실험치와 이론적 해석에 의한 결과치와의 비교를 나타내고 있다.특히 물질전달의 극대화를 위하여 충진층 내에서 공기와 흡수제의 접촉면적을 크게 할 필요가 있는데,이를 위해서 본 실험에서는 직경이 3cm인 플라스틱제 충진재를 사용하였으며, 흡수제로는 저농도의 염화리튬 수용액이 사용 되었다. 충진층 내에서의 최적 높이를 예측하기 위하여 해석의 모델인 실험장치를 직접 제작하여 실험을 수행하였고, 이론 해석에 있어서 체적 열전달을 고려한 정상상태를 모델화하여 해석하였다. 이 결과, 충진층 내에서 실험치와 이론적인 계산치가 잘 일치함을 알 수 있었으며, 충진층의 높이가 2m 이상인 경우에는 높이에 따른 재생량의 차이가 없어서 없음을 알 수 있었다.