• Title/Summary/Keyword: 물성 향상

Search Result 1,442, Processing Time 0.035 seconds

Effect of Lentil and Opuntia ficus-indica Mixtures Addition on Quality Characteristics of Sausages (렌틸과 백년초의 혼합첨가가 소시지의 품질특성에 미치는 영향)

  • Lee, Namrye;Kim, Kyoung Hee;Yook, Hong Sun
    • Korean journal of food and cookery science
    • /
    • v.31 no.4
    • /
    • pp.431-440
    • /
    • 2015
  • This study was performed to evaluate the quality characteristics of sausages after addition of lentil and Opuntia ficus-indica ethanol extract. Seven sausages were prepared as follows : F0 (control), F1 (5% lentils), F2 (5% lentils + 1% Opuntia ficus-indica), F3 (5% lentils + 3% Opuntia ficus-indica), F4(10% lentils), F5 (10% lentils + 1% Opuntia ficus-indica), and F6 (10% lentils + 3% Opuntia ficus-indica). Addition of lentils increase dietary fiber and starch in sausage while lowering fat content. Starch is used in manufacturing sausage to stabilize and increase viscosity. Opuntia ficus-indica contains dietary fibers and therefore addition of it to sausage increases dietary fiber, much like lentil addition. Lightness decreased and yellowness increased in all treatments. Redness was lowered by lentil addition but enhanced by addition of Opuntia ficus-indica. Redness in F3 and F5 were similar with control. But, F5 was more similar with control in all colors. Addition of lentil and Opuntia ficus-indica improved texture in hardness, springiness, gumminess, and chewiness. In sensory evaluation, color was lowered but taste was heightened by adding lentil and Opuntia ficus-indica extract. From results of this study, we could conclude that addition of mixture of lentil and Opuntia ficus-indica made sausage low in fat, with high in dietary fibers and starch. In addition, texture was increased and taste was better. F5 had the most similar color to control. We found out the optimal amounts of the two ingredients, lentil and Opuntia ficus- indica extract, were 10% and 1%, respectively.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

Investigating the Partial Substitution of Chicken Feather for Wood Fiber in the Production of Wood-based Fiberboard (목질 섬유판 제조에 있어 도계부산물인 닭털의 목섬유 부분적 대체화 탐색)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong;Oh, Seung Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.577-584
    • /
    • 2018
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a partial substitute of wood fiber in the production of wood-based fiberboard. Keratin-type protein constituted the majority of CF, and its appearance did not differ from that of wood fiber. When the formaldehyde (HCHO) adsorptivities of CF compared by its pretreatment type, feather meal (FM), which was pretreated CF with high temperature and pressure and then grounded, showed the highest HCHO adsorptivity. In addition, there was no difference between the adsorbed HCHO amounts, which was measured by dinitrophenylhydrazine method, of scissors-chopped CF and CF beated with an electrical blender. Mechanical properties and HCHO emission of medium-density fiberboards (MDF), which were fabricated with wood fiber and 5 wt% CF, beated CF or FM based on the oven-dried weight of wood fiber, were not influenced by the pretreatment type of CF. However, when the values compared with those of MDF made with just wood fiber, thickness swelling and HCHO emission of the MDF were improved greatly with the addition of CF, beated CF or FM. Based on the results, it might be possible to produce MDF with improved dimensional stability and low HCHO emission if CF, beated CF or FM is added partially as a substitute of wood fiber in the manufacturing process of MDF produced with the conventional urea-formaldehyde resin of $E_1$ grade. However, the use of CF or FM in the production of MDF has a low economic feasibility at the current situation due to the securing difficulty and high cost of CF. In order to enhance the economic feasibility, it requires to use CF produced at small to medium-sized chicken meat plants. More importantly, it is considered that the technology developed from this research has a great potential to make provision for the prohibition of animal-based feed and to dispose environmentally avian influenza-infected poultry.

Effect of Soluble Chitosan on the Quality of Paeksulgis (백설기의 품질특성에 미치는 수용성 키토산의 영향)

  • 박찬성;정현숙
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • Paeksulkis(Korean rice cake) containing 0-0.5% chitosan were prepared for test the quality of microbiological, mechanical and sensory characteristics. The pH of Paeksulkis was 5.65 without chitosan and that was about 7.0 with 0.05-0.5% level of chitosan. In Hunter's color values of Paeksulkis of control, the lightness(L) was 84.28, redness(a) was -1.56 and yellowness(b) was 7.68. The lightness(L), redness(a) and yellowness(b) were increased with increasing concentration of chitosan in Paeksulkis. In mechanical characteristics of Paeksulkis, cohesiveness and springiness were the highest in control group while strength, hardness, gumminess and brittlenes were higher in chitosan added group than control group. In sensory evaluation of Pasksulkis, control group obtained the highest score in color, texture, after swallowing and overall quality(p<0.05) but chitosan added group obtained higher scores in moisture than control(p<0.05). Total bacterial counts(TBC) of Paeksulgis immediately before storage were 4.2∼9.2$\times$10$^2$CFU/g and those of control increased for 2 weeks, reached at 7.4$\times$10$\^$5/ CFU/g and then decreased about 1 log cycle for 2 weeks during storage at 5$\^{C}$. TBC of Paeksulgis added 0.3∼0.5% of chitosan were 2 log cycles lower than that of control at the end of storage at 5$\^{C}$. TBC of Pasksulgis control increased to 10$\^$8/ CFU/g during storage at 20$\^{C}$ but that of 0.5% chitosan added group was 1 log cycle lower than control at the end of storage. Shelf-life extension of Paeksulkis by chitosan was more effective during storage at 5$\^{C}$ than at 20$\^{C}$.

Quality Enhancement of Vaccum Packaged Waxy Corns by Far Infrared Ray Drying (원적외선 건조처리에 의한 진공포장 찰옥수수의 품질확보)

  • Choi, Jae-Ho;Im, Ji-Soon;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.635-640
    • /
    • 2006
  • This study was conducted to determine the effect of far infrared ray drying on the microbial and quality changes of vacuum packaged waxy corns, such as microbial growth, rehydration, color differences, weight loss and hardness during the storage at $4^{\circ}C$ and $25^{\circ}C$ for 7 months. After far infrared ray drying for 6 hours at $60^{\circ}C$, 2.32 log CFU/g of total microbial counts in raw waxy corns was enumerated, but no microorganism was detected in steamed or sugar-treated waxy corns. However, no microorganism was observed in all treatments except for control samples until 3 month storage at $4^{\circ}C$, whereas steamed and sugar-treated waxy corns showed 2 and 2.7 log reduction compared to that of control after 3 month storage. Yeasts and molds were more resistant than bacteria against far infrared ray drying at the same conditions. Similar results were observed in $25^{\circ}C$ storage. The degree of gelatinization in raw waxy corns far infrared ray drying changed from 98% to 96.2% after 7 month storage at $4^{\circ}C$, whereas steamed waxy corns with far infrared ray drying changed from 81.14% to 58.73%. Water contents in sugar-treated waxy corns with far infrared ray drying gradually reduced compared to steamed waxy corns as drying time increased. The L values in raw waxy corns far infrared ray drying increased as drying time increased, but L values in steamed or sugar-treated waxy corns significantly reduced after 12 hour far infrared ray drying. Hardness in raw waxy corns was higher than in steamed or sugar-treated waxy corns before storage, but similar hardness was observed between raw- and sugar-treated waxy corns after 9 hour drying. This results showed that the microbial reduction, the enhancement of shelf life and quality establishment of steamed or sugar-treated waxy corns could be maximized by using far infrared ray drying.

Effects of Addition of Gelatinized Wheat Flour Dough on Pan Bread (호화밀가루반죽의 첨가가 식빵 특성에 미치는 영향)

  • Kim, Won-Mo;Kim, Kee-Hyuk;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1467-1475
    • /
    • 2016
  • To make soft and less stale bread, various amounts of gelatinized wheat flour dough were added for making pan bread. In the dough process, higher gelatinized wheat flour dough showed higher consistency and dough development time but a lower dough stability time. Expansion during fermentation represented the highest value upon addition of 10% gelatinized wheat flour dough (GWFD), and this value decreased with increasing amount of gelatinized wheat flour dough. Volume of bread was the highest in the control and lowest in 30% GWFD, and there was no difference between 10% GWFD and 20% GWFD. Moisture contents of bread made with various amounts of gelatinized wheat flour dough increased with increasing gelatinized wheat flour dough amount. Color values of bread made with various gelatinized wheat flour dough were not significantly different. Chewiness, brittleness, and hardness of bread made with control and 10% GWFD showed low values, whereas bread made with 20% GWFD and 30% GWFD showed high values. During storage, chewiness, brittleness, and hardness increased with increasing storage period in whole breads, whereas breads made with 10% GWFD showed the lowest increasing rate. In the sensory strength test, chewy texture increased upon addition of gelatinized wheat flour dough. In the consumer acceptance test, 10% GWFD showed the most overall acceptance. In conclusion, bread made with 10% gelatinized wheat flour dough is desirable for increasing softness and decreasing bread staling.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Quality Properties of Appenzeller Cheese Containing Green Tea Powder (녹차 첨가 아펜젤러 치즈의 품질 특성)

  • Choi, Hee-Young;Choi, Hyo-Ju;Yang, Chul-Ju;Lee, Sang-Suk;Choi, Gap-Sung;Park, Jeong-Ro;Chun, Sun-Sil;Shin, Hyon-Jung;Jeong, Seok-Geun;Bae, In-Hyu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.7-16
    • /
    • 2009
  • Appenzeller cheese samples were prepared by addition of 0.5, 1.0, and 2.0% green tea (Camellia sinensis, CS) powder and control cheese. We examined various quality characteristics of the novel cheese, such as viable-cell counts, pH, water-soluble nitrogen (WSN), non-casein nitrogen (NCN), non-protein nitrogen (NPN), and catechin level during maturation for 16 weeks at $14^{\circ}C$. To develop a Korean natural cheese containing green tea powder, we also analyzed the changes in the polyacrylamide gel electrophoresis pattern, chemical composition, and sensory qualities. The viable cell counts of the samples were not significantly different. Until the $3^{rd}$ week, the pH of the CS cheese decreased with an increase in the maturation time. However, the pH gradually increased by the $12^{th}$ week, while WSN, NCN, NPN also increased. The WSN, NCN, NPN, and catechin values for the CS cheese samples were significantly higher than the values for the control cheese. The polyacrylamide gel electrophoretic pattern of caseins for the CS cheese indicated that this cheese degraded more rapidly than the control cheese did. In the sensory evaluation, cheese with 1.0% CS powder showed the highest scores in taste and appearance and good scores in flavor and texture. These results indicate that 1.0% CS is the optimal value for addition to cheese, and cheese containing 1.0% CS shows good physiological properties and reasonably high overall sensory acceptability.

  • PDF

The Study on Physical Properties and Applicability of Material of Polyamide-66/Glass Fiber Blends Composition to the Eyewear Frame (Polyamide-66/Glass fiber 블렌드 조성물의 물리적 특성 및 안경테 소재로써의 적용성에 관한 연구)

  • Son, Jin-Young;Lee, Ji-Eun;Choi, Kyung-Man;Bae, Yu-Hwan;Kim, Ki-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.365-371
    • /
    • 2013
  • Purpose: In this study, we evaluated the physical and thermal properties of the compositions made by blending glass fiber (GF) of different contents into glass fiber polyamide-66, and investigated if the compositions applying to the glasses frame to replace the TR-90, which is polyamide-12 resin used as an injection-type spectacle frame material. Methods: To investigate the characteristics change of polyamide-66 (PA-66) compositions with the change of the content of glass fibers, we produced a composition of the content by using a twin-screw extruder. The mechanical strength of the composition production was measured and coating properties as well as cutting processability were evaluated. We evaluated the applicability of the glasses frame by comparison the results of new compositions with characterizations of traditional TR. Results: For the results of the characterization of Polyamide-66/GF composition, we found that the higher increase of content of the glass fiber, the less mold shrinkage rate, and the mechanical strength was increased. Tensile strength increased from $498kg/cm^2$ for 0 wt% of the content of the glass fibers to $849kg/cm^2$ for 30 wt% of the content of the glass fibers. As a result of a coating evaluation, the strength of coating was 4B in the GF 5wt% and 5B, which was extremely good coating characteristics, in the over than GF 5 wt%. Conclusions: In case that 30 wt% of the glass fiber was blended, the mechanical strength was greatly improved, the hardness was increased, injection temperature increased due to increase of the viscosity, and the flow mark of the product may occur. The paint coating of PA-66 blended with glass fiber was all excellent. With general evaluating physical properties and workability properties it was determined that around 10 wt% of the content of the glass fibers was possible to apply a spectacle frame.