• 제목/요약/키워드: 문제해결 학습모델

검색결과 743건 처리시간 0.035초

비자동회귀 다중 디코더 기반 한국어 형태소 분석 (Non-autoregressive Multi Decoders for Korean Morphological Analysis)

  • 조성민;송현제
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.418-423
    • /
    • 2022
  • 한국어 형태소 분석은 자연어 처리의 기초가 되는 태스크이므로 빠르게 결과를 출력해야 한다. 기존연구는 자동회귀 모델을 한국어 형태소 분석에 적용하여 좋은 성능을 기록하였다. 하지만 자동회귀 모델은 느리다는 단점이 있고, 이 문제를 극복하기 위해 비자동회귀 모델을 사용할 수 있다. 비자동회귀 모델을 한국어 형태소 분석에 적용하면 조화롭지 않은 시퀀스 문제와 토큰 반복 문제가 발생한다. 본 논문에서는 두 문제를 해결하기 위하여 다중 디코더 기반의 한국어 형태소 분석을 제안한다. 조화롭지 않은 시퀀스는 다중 디코더를 적용함으로써, 토큰 반복 문제는 두 개의 디코더에 서로 어텐션을 적용하여 문제를 완화할 수 있다. 본 논문에서 제안한 모델은 세종 형태소 분석 말뭉치를 대상으로 좋은 성능을 확보하면서 빠르게 결과를 생성할 수 있음을 실험적으로 보였다.

  • PDF

상대적 가중치 자질을 반영한 CRF 기반의 개체명 인식 (Named Entity Recognition based on CRF reflecting relative weight)

  • 정진욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.338-339
    • /
    • 2017
  • 본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.

  • PDF

Bidirectional LSTM-CRF 모델을 이용한 멘션탐지 (Mention Detection using Bidirectional LSTM-CRF Model)

  • 박천음;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

경험 중심 교육을 기반으로 한 소프트웨어 교육 방안 (Software Education based on Experiential Education)

  • 진광훈;이명숙
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.327-330
    • /
    • 2019
  • 본 연구는 기존의 소프트웨어 교육 방법이 가지는 문제점을 분석하고, 이를 해결하기 위한 방안으로 존듀이와 프레네의 경험 중심 교육 방법에 기반을 둔 새로운 소프트웨어 교육 모델을 제안한다. 경험 중심 기반의 새로운 소프트웨어 교육 방법은 학습자들의 자율성을 보장하고, 학습자들 간의 상호작용을 통해 일상생활의 문제점을 해결할 수 있는 문제 해결력을 기르는데 중점을 두고 있다. 따라서 본 연구는 자유로운 사고방식으로 일상생활의 다양한 문제를 발견할 수 있는 능력과 다양한 경험을 통해 이를 해결할 수 있는 능력을 기르도록 체계화된 소프트웨어 교육 모델을 구성할 것이며 이를 통해 소프트웨어 교육의 발전에 기여하고자 한다.

  • PDF

온라인 학습에서의 학습 정도 측정 방법의 대안 QPS ; Question Pass System (e-learning study measurement method QPS ; Question Pass System)

  • 이두영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.768-769
    • /
    • 2013
  • 국내 이러닝은 온라인의 장점을 충분히 활용하지 못하고 있다고 할 수 있다. 이러닝이 점차 보편화 되고 있는 시점에서, 학습 모델의 다양화가 이루어진다면 오프라인 학습 방식에도 영향을 끼칠것으로 보인다. 우리나라의 교육환경의 고질적인 문제들을 해결할 수 있는 모델 개발이 활성화 될 필요가 있다. 그 방법 중 하나로, 기존의 이러닝 플랫폼에서 사용되고 있는 학습정도 측정방식인 접속시간에 의한 출석인정 방법의 한계점을 고찰한다. 디바이스의 발달로 모바일 환경이 급속도로 퍼진 현재에 구태의연한 방법을 과감히 지양하고 기존 이러닝 플랫폼의 한계점을 보완할 수 있는 방법으로 문제를 활용한 학습도 측정방법을 제시한다.

  • PDF

실시간 리샘플링 기법을 활용한 LSTM 기반의 사기 거래 탐지 시스템 (LSTM-based fraud detection system framework using real-time data resampling techniques)

  • 김서이;이연지;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.505-508
    • /
    • 2024
  • 금융산업의 디지털 전환은 사용자에게 편리함을 제공하지만 기존에 존재하지 않던 보안상 취약점을 유발했다. 이러한 문제를 해결하기 위해 기계학습 기술을 적용한 사기 거래 탐지 시스템에 대한 연구가 활발하게 이루어지고 있다. 하지만 모델 학습 과정에서 발생하는 데이터 불균형 문제로 인해 오랜 시간이 소요되고 탐지 성능이 저하되는 문제가 있다. 본 논문에서는 실시간 데이터 오버 샘플링을 통해 이상 거래 탐지 시 데이터 불균형 문제를 해결하고 모델 학습 시간을 개선한 새로운 이상 거래 탐지 시스템(Fraud Detection System, FDS)을 제안한다. 본 논문에서 제안하는 SMOTE(Synthetic Minority Oversampling Technique)를 적용한 LSTM(Long-Short Term Memory) 알고리즘 기반의 FDS 프레임워크는 종래의 LSTM 알고리즘 기반의 FDS 모델과 비교했을 때, 데이터 사이즈가 96.5% 감소했으며, 정밀도, 재현율, F1-Score 가 34.81%, 11.14%, 22.51% 개선되었다.

신경망을 이용한 고신뢰성의 회귀분석 모델 (Regression Model With High Reliability by Using Neural Networks)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.327-334
    • /
    • 2001
  • 본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.

  • PDF

FAQ 분류 성능 향상을 위한 클래스 일치 여부 결합 학습 모델 (Jointly learning class coincidence classification for FAQ classification)

  • 양동일;함진아;이강욱;이지연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.12-17
    • /
    • 2019
  • FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.

  • PDF

이미지 분류 문제를 위한 focal calibration loss 기반의 지식증류 기법 (Focal Calibration Loss-Based Knowledge Distillation for Image Classification)

  • 강지연 ;이재원 ;이상민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.695-697
    • /
    • 2023
  • 최근 몇 년 간 딥러닝 기반 모델의 규모와 복잡성이 증가하면서 강력하고, 높은 정확도가 확보되지만 많은 양의 계산 자원과 메모리가 필요하기 때문에 모바일 장치나 임베디드 시스템과 같은 리소스가 제한된 환경에서의 배포에 제약사항이 생긴다. 복잡한 딥러닝 모델의 배포 및 운영 시 요구되는 고성능 컴퓨터 자원의 문제점을 해결하고자 사전 학습된 대규모 모델로부터 가벼운 모델을 학습시키는 지식증류 기법이 제안되었다. 하지만 현대 딥러닝 기반 모델은 높은 정확도 대비 훈련 데이터에 과적합 되는 과잉 확신(overconfidence) 문제에 대한 대책이 필요하다. 본 논문은 효율적인 경량화를 위한 미리 학습된 모델의 과잉 확신을 방지하고자 초점 손실(focal loss)을 이용한 모델 보정 기법을 언급하며, 다양한 손실 함수 변형에 따라서 지식증류의 성능이 어떻게 변화하는지에 대해 탐구하고자 한다.

ChatGPT를 활용한 수자원시스템분야 문제해결사례 소개 및 고찰 (Research cases and considerations in the field of hydrosystems using ChatGPT)

  • 유도근;이찬욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.98-98
    • /
    • 2023
  • ChatGPT(Chat과 Generative Pre-trained Transformer의 합성어)는 사용자와 주고받는 대화의 과정을 통해 질문에 답하도록 설계된 대형언어모델로, 지도학습과 강화학습을 모두 사용하여 세밀하게 조정된 인공지능 챗봇이다. ChatGPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 보고서나 실제로 작동하는 파이썬 코드를 비롯한 인간과 유사하게 상세하고 논리적인 글을 만들어 낼 수 있다고 알려져있다. 본 연구에서는 수자원시스템분야의 문제해결에 있어 ChatGPT의 적용가능성을 사례기반으로 확인하고, ChatGPT의 올바른 활용을 위해 필요한 사항에 대해 고찰하였다. 수자원시스템분야의 대표적인 연구주제인 상수관망시스템의 누수인지와 수리해석을 통한 문제해결에 ChatGPT를 활용하였다. 즉, 딥러닝 기반의 데이터분석을 활용한 누수인지와 오픈소스기반의 수리해석 모델을 활용한 관망시스템 적정 분석을 목표로 ChatGPT와 대화를 진행하고, ChatGPT에 의해 제안된 코드를 구동하여 결과를 분석하였다. ChatGPT가 제시한 코드의 구동결과를 사전에 연구자가 직접 구현한 코드구동 결과와 비교분석하였다. 분석결과 ChatGPT가 제시한 코드가 보다 더 간결할 수 있으며, 상대적으로 경쟁력 있는 결과를 도출하는 것을 확인하였다. 다만, 상대적으로 간결한 코드와 우수한 구동결과를 획득하기 위해서는 해당 도메인의 전문적 지식을 바탕으로 적절한 다수의 질문을 해야 하며, ChatGPT에 의해 작성된 코드의 의미를 명확히 해석하거나 비판적 분석을 하기 위해서는 전문가지식이 반드시 필요함을 알 수 있었다.

  • PDF