• Title/Summary/Keyword: 문제집

Search Result 998, Processing Time 0.021 seconds

The Study on the Integrated Monitoring of Water Quantity and Quality Data (수량 및 수질관측 통합연계 운영 연구)

  • Yi, Jae-Eung;Kim, Mun-Mo;Park, Sung-Je
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.115-123
    • /
    • 2009
  • Integrated information to water quantity and quality is essential for planning water resources management as well as operating water-related infrastructures. Because data collection process including monitoring and maintenance is separated in different governmental agencies in Korea, integrating quantity and quality may provide effective and better management implementation. In this study, a number of suggestions regarding integration of water monitoring were concluded in terms of technological, legal and institutional implications. First, it is necessary to discuss national water monitoring plan, national water information management plan, agreement of standard terms of monitoring between ministries, and to revise the law(river law and water quality management law). Present stations for water monitoring should be used for both of quantity and quality monitoring. If station is newly installed or relocated, it is better that one single agency maintain monitoring frequency and data management as well. In addition, a monitoring protocol need to be agreed by each of parties. In order to develop integrated monitoring system, quality assurance of the collected data should be properly maintained. Since many purposes haven been concerned using of data analysis and assessment so far, it may not be easy to integrate water quantity and quality monitoring in a short period. However, the alternatives including enhancing institutional regulations and programs, advanced technology may promote an efficient integrated water monitoring.

Mixture Study for Early-age Strength Improvement of NAC-typed High-strength Concrete Piles (NAC 방식 고강도 콘크리트 파일의 초기강도증진을 위한 배합에 대한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Due to the influence of global oil prices, industrial productivity, which oil consumption is high, was significantly reduced. AC type of high-strength PHC piles is being manufactured through twice the steam curing process and this have resulted in a significant rise for product's manufacturing costs. NAC way other types of file manufacturing process has the advantage of reducing manufacturing costs by a turn of the steam curing. Nevertheless, because the initial strength be poor than that of AC method, shipment is being after the curing period of approximately three days. In addition, the growth of the product enhance with curing period can not be avoided, as a result, cost of inventory is acting as the rise. Piles by the AC method is immediately shipped after curing, damaging problems does not occur when they are introduced to the field site (for example, pile on-site). In the case of NAC, however, at least after the curing period of three days and after expressing the strength of 80 MPa or more, they are shipped on the scene. Therefore, NAC type has problems as follows: (1) increase in moderate inventory holding costs with type and (2) breakage in the field due to lack of strength. In this study, for NAC-typed PHC files, mixing characteristics research for the strength development at 1 day equivalent to AC method were conducted and strength characteristics with changes of original materials were evaluated were also identified.

Experimental Study for Earthquake and Subsidence-resistant Performance Evaluation of iPVC Buried Water Pipe (iPVC 매립 상수도관의 내진 성능 및 내침하 성능 평가를 위한 시험적 연구)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Jae-Bong;Ju, Bu-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • Water pipes are important facilities and consist of pipes of various specifications and materials. The annual average number of earthquakes in Korea is steadily increasing. Therefore, in case of the water pipe, it is estimated necessary to prepare for earthquakes. Damages to the water pipe by the earthquake can cause problems such as water supply and fire suppression, and cause damage to life and property. In Korea, however, it is difficult to find examples of seismic performance evaluation of water pipes based on experimental study. Damage to the water pipes by the earthquake is caused by the displacement-controlled behavior of the ground which is the liquifaction and fault lines. Especially, The damage to the water pipes by the earthquake is concentrated on the joint of the pipe. In particular, piping less than 200mm in diameter was found to be dangerous. Thus, in this study, the seismic and settlement performance of iPVC buried water pipes with fixed joints with a clamp of 150mm was evaluated with a test approach.

Optimal Reservoir Operation Using Goal Programming for Flood Season (Goal Programming을 이용한 홍수기 저수지 최적 운영)

  • Kim, Hye-Jin;Ahn, Jae-Hwang;Choi, Chang-Won;Yi, Jae-Eung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • The purpose of multipurpose reservoir operation in flood season is to reduce the peak flood at a control point by utilizing flood control storage or to minimize flood damage by controlling release and release time. Therefore, the most important thing in reservoir operation for flood season is to determine the optimal release and release time. In this study, goal programming is used for the optimal reservoir operation in flood season. The goal programming minimizes a sum of deviation from the target value using linear programming or nonlinear programming to obtain the optimal alternative for the problem with more than two objectives. To analyze the applicability of goal programming, the historical storm data are utilized. The goal programming is applied to the reservoir system operation as well as single reservoir operation. Chungju reservoir is selected for single reservoir operation and Andong and Imha reservoirs are selected for reservoir system operation. The result of goal programming is compared with that of HEC-5. As a result, it was found that goal programming could maintain the reservoir level within flood control level at the end of a flood season and also maintain flood discharge within a design flood at a control point for each time step. The goal programming operation is different from the real operation in the sense that all inflows are assumed to be given in advance. However, flood at a control point can be reduced by calculating the optimal release and optimal release time using suitable constraints and flood forecasting system.

A Study on the Reinforcement of Bridge Foundation in the Limestone Cavity (석회암 공동지역의 교량기초 보강에 관한 연구)

  • Lee, Sang-Chul;Ryu, Chang-Yeol;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Irregular distributions of limestone cavity in Gang-Won province area may cause unexpected accidents from reduced serviceability or failure of structure. It is requested that an appropriate ground reinforcement method should be used to improve bearing capacity of structure, and the method should also be satisfied with environmental requirements. Among several methods used for foundation constructions in cavity area, Rod Jet Pile(RJP) method has been widely used. While the RJP method was used to improve bearing capacity for the railway bridge foundations, water pollutions of drinking water as well as fishery located adjacent to this project area were occurred. The main reason of the water pollution was cement runoff used in cement mortar during injecting material in RJP method. Laboratory tests were performed to prevent water pollution. The compaction mortar method using low movable material was selected for this project. The quality of water at a fishery adjacent to the site and the compressive strength of cores taken from the construction site were measured. Test results show that the water pollutions was minimized, and the average compressive strength of foundation material was over 5 MPa. As a result of this study, compaction mortar method can be used to ensure the bearing capacity of foundation and to prevent environment pollutions.

Numerical Analysis of Riverbed Changes at the Downstream of the Ji-Cheon (수치모형을 이용한 지천하류부의 하상변동 분석)

  • Choi, Ho;Rim, Chang-Soo;Jung, Jae-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.117-125
    • /
    • 2011
  • River bed variation drops storage capacity of dams and reservoirs, and furthermore deteriorates safety of banks and peers. Therefore, understanding of bed variation is important to use and manage river water. Study section is downstream part of Ji- Cheon nearby Ji-Cheon Bridge which is located in Gum river basin. The river surveying at fourteen places with the length of 1,320m were undertaken on November 7, 2003 and September 24, 2004, and the results of river surveying were analyzed for the study. Real bed variation was compared with the simulation results of HEC-6 and GSTARS 3.0. Cross section data for the simulation of HEC-6 and GSTARS3.0 were composed of the basis of river surveying data on November 7, 2003. Hydrological data were acquired from Gu-Ryong watermark located at Ji-Chun Bridge. The research results revealed that when using Toffaleti equation, simulation results of two models were similar to the real bed variation. The bed variation simulated by using GSRARS 3.0 with only one stream tube was similar to the real bed variation. The bed variation simulated by using two models(HEC-6 and GSTRARS 3.0) with Toffaleti equation was also similar to the real bed variation. Therefore, it is expected that HEC-6 and GSTARS 3.0 models have applicability to predict the bed variation at the downstream of Ji-Cheon.

An evaluation methodology for cement concrete lining crack segmentation deep learning model (콘크리트 라이닝 균열 분할 딥러닝 모델 평가 방법)

  • Ham, Sangwoo;Bae, Soohyeon;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.513-524
    • /
    • 2022
  • Recently, detecting damages of civil infrastructures from digital images using deep learning technology became a very popular research topic. In order to adapt those methodologies to the field, it is essential to explain robustness of deep learning models. Our research points out that the existing pixel-based deep learning model evaluation metrics are not sufficient for detecting cracks since cracks have linear appearance, and proposes a new evaluation methodology to explain crack segmentation deep learning model more rationally. Specifically, we design, implement and validate a methodology to generate tolerance buffer alongside skeletonized ground truth data and prediction results to consider overall similarity of topology of the ground truth and the prediction rather than pixel-wise accuracy. We could overcome over-estimation or under-estimation problem of crack segmentation model evaluation through using our methodology, and we expect that our methodology can explain crack segmentation deep learning models better.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

Development of Removable Deck Plate Formwork System for Beams (데크플레이트를 활용한 탈형 보-데크 거푸집 시스템 개발)

  • Jung, Joo-Hong;Jung, Hyung-Suk;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.60-67
    • /
    • 2021
  • In lately, it's been developed and used a system of using deck plates as formwork in order to solve various problems caused by conventional formwork system. This system is more economical and has higher constructability than the conventional system by permanently embedding most of deck plates into the members. However, for this kind of embedded deck plates formwork system, it's been reported that it is difficult to verify filling of concrete in members like beams with narrow width and complicated rebar arrangement. In addtion, there are several problems such as corrosion of deck plates in terms of constructability and maintenance. Therefore, in this study, it is attempted to develop a removal-deck plate formwork system for beams by removing deck plates after concrete curing. The system consists of a deck plate module that acts as form, a frame preventing deformation by concrete lateral pressure, stirrup frame, and connector that combines these. As a result of this research, it is verified that it has higher constructability, efficiently prevents deformation caused by concrete lateral pressure and could be easily removed in the developed formwork system.

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.