• 제목/요약/키워드: 문장 구성

검색결과 642건 처리시간 0.024초

어휘 정보를 이용한 문장완성의 구현 (Implementation of Sentence Construction using Lexical Information)

  • 황인정;이은실;민홍기
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.10-13
    • /
    • 2003
  • 본 연구는 어휘 정보를 이용하여 구어체 문장구성을 하였다. 구어체 문장구성의 목적은 언어생활이 불편한 사람들을 위한 통신보조기기에 사용하기 위해서이다. 통신보조기기는 사용자가 원하는 문장을 만들어 음성으로 출력해주는 시스템이다. 그러므로 문장을 구성하기 위해서 어휘 정보를 통신보조기기의 개념에 맞도록 변형하여 도입하였다. 어휘는 도메인별로 발췌하고 분류하였으며, 각 어휘에 대해 시소러스와 하위범주화사전을 만들었다. 어휘정보에 관한 상세한 정보는 문장구성과 재사용 그리고 문맥상 어색한 문장검출을 위해 중요한 자료가 된다.

  • PDF

초등수학에서 문장제의 수학적 구조 파악을 통한 문장제 이해 지도 방안 (Teaching the Comprehension of Word Problems through Their Mathematical Structure in Elementary School Mathematics)

  • 라우성;백석윤
    • 한국초등수학교육학회지
    • /
    • 제13권2호
    • /
    • pp.247-268
    • /
    • 2009
  • 본 연구는 주어진 문장제의 이해에 초점을 두고 그 문제를 구성하고 있는 수학적 구성요소에 대한 이해 및 그 요소들 사이의 구조를 바탕으로 수학학습 성취도가 높은 학습자 군이 보이는 문장제 이해의 특징을 살펴보고, 일반 학생들의 문장제 이해를 돕는 지도 방안을 구안하는데 연구 목적이 있다. 이 연구 목적을 위하여 수학교과서 및 수학익힘책 총 24권에 제시되어 있는 문장제를 수학적 구성요소에 의거 수학적 구조를 유형화하고, 3학년 1개 학급의 수학학습 성취도가 높은 학생을 대상으로 그들이 보여주는 문장제의 수학적 구조 파악의 특징을 살펴보았으며, 이를 문장제의 수학적 구조 파악을 강조하는 일반적인 지도 방안 구안에 적용하였다. 연구 결과는 첫째, 문장제는 문장제를 구성하고 있는 수학적 구성요소가 이루고 있는 구조를 총 9가지 유형으로 분류할 수 있다. 둘째, 수학학습 성취도가 높은 학습자는 문장제를 이해할 때, 4가지의 특징을 보였다. 셋째, 문장제의 수학적 구조 파악을 강조하는 지도 방안을 4가지 도출해 내어 수정 보완하였다.

  • PDF

한국어 확률 의존문법 학습 (Probabilistic Dependency Grammar Induction)

  • 최선화;박혁로
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.513-515
    • /
    • 2003
  • 본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 의존문법 생성을 위해 구성성분의 기능어들 간의 의존관계를 학습했던 기존 연구와는 달리. 한국어 구성성분은 내용어와 기능어의 결함 형태로 구성되고 임의 구성성룬 기능어와 임의 구성성분 내용어간의 의존관계가 의미가 있다는 사실을 반영한 의존문법 학습방법을 제안한다. KAIST의 트리 부착 코퍼스 31,086문장에서 추출한 30,600문장의 Tagged Corpus을 가지고 학습한 결과 초기문법을 64%까지 줄인 1.101 개의 의존문법을 획득했고. 실험문장 486문장을 Parsing한 결과 73.81%의 Parsing 정확도를 보였다.

  • PDF

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

어휘 유사 문장 판별을 위한 BERT모델의 학습자료 구축 (Methodology of Developing Train Set for BERT's Sentence Similarity Classification with Lexical Mismatch)

  • 정재환;김동준;이우철;이연수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.265-271
    • /
    • 2019
  • 본 논문은 어휘가 비슷한 문장들을 효과적으로 분류하는 BERT 기반 유사 문장 분류기의 학습 자료 구성 방법을 제안한다. 기존의 유사 문장 분류기는 문장의 의미와 상관 없이 각 문장에서 출현한 어휘의 유사도를 기준으로 분류하였다. 이는 학습 자료 내의 유사 문장 쌍들이 유사하지 않은 문장 쌍들보다 어휘 유사도가 높기 때문이다. 따라서, 본 논문은 어휘 유사도가 높은 유사 의미 문장 쌍들과 어휘 유사도가 높지 않은 의미 문장 쌍들을 학습 자료에 추가하여 BERT 유사 문장 분류기를 학습하여 전체 분류 성능을 크게 향상시켰다. 이는 문장의 의미를 결정짓는 단어들과 그렇지 않은 단어들을 유사 문장 분류기가 학습하였기 때문이다. 제안하는 학습 데이터 구축 방법을 기반으로 학습된 BERT 유사 문장 분류기들의 학습된 self-attention weight들을 비교 분석하여 BERT 내부에서 어떤 변화가 발생하였는지 확인하였다.

  • PDF

한국어의 운율구조와 통사-의미구조와의 관계

  • 이호영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1990년도 제2회 한글 및 한국어정보처리 학술대회
    • /
    • pp.57-64
    • /
    • 1990
  • 문장을 이루는 문장 구성성분 사이에는 다른 정도의 운율적 친밀성 (운율적 구성성분관계)와 상대적이며 계층적인 운율적 강도관계가 존재하며, 이를 바탕으로 문장의 운율구조를 세울 수 있으며, 운율구조는 나무그림으로 나타내는 것이 가장 효과적이다. 운율구조는 대응하는 통사구조가 보여주는 통사적 구성성분 관계 (constituency)와 계층적 지배관계와 대부분 일치하지 않지만, 문장의 운율구조는 먼저 구단위로 운율구조를 부과하고, 그 다음 단계에서 각 구들의 운율구조를 연결하여 완성해야 하며, 통사구조가 같은 구(phrase)도 구성요소들 사이에 존재하는 의미구조의 차이에 의해서 다른 운율구조를 가질 수도 있다. 그리고 문장의 일부만이 초점을 받으면, 초점받은 부분이 가장 강한 운율강도를 갖게되어 전체초점을 받을 때의 운율적 구성성분 관계와 계층적인 운율적 강도관계가 변할 수 있다.

  • PDF

개연성 규칙과 문장추상화를 활용한 문서요약 (Text Summarization with Abductive Rules and Sentence Abstraction)

  • 김곤;배재학
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.359-362
    • /
    • 2002
  • 본 논문에서는 문장추상화와 문장간 개연적 연결상황을 활용한 문단 기준의 문서요약을 생각하였다. 구상한 문단기준 문서요약 방법론은 다음과 같은 절차로 구성되어 있다: (1) 문단의 문장들을 추상화시킨다, (2) 문장구성성분들의 문장간 개연적 연결상황을 확인한다, (3) 연결집중도가 상대적으로 높은 문장을 문단의 화제를 담고 있는 것으로 인정한다. 본 논문에서는 이 과정에서 문장추상화에 필요한 구문분석기와 온톨로지를 구체화하였고, 문장추상기로 설화문장 추상화를 하였다. 그 후 개연성 규칙을 적용하여 문단의 주제문을 선별하였다.

  • PDF

과학문장 읽기를 통한 학생들의 과학적 이해 과정 분석 - 문헌 연구를 중심으로 - (Analysis of Processes in Students' Scientific Understanding Through Reading Scientific Texts -Focused on Literature Review-)

  • 박종원
    • 한국과학교육학회지
    • /
    • 제30권1호
    • /
    • pp.27-41
    • /
    • 2010
  • 과학문장은 과학적 이해를 위한 중요한 정보원이고 따라서 과학문장 읽기는 과학적 이해를 위해 중요한 학습활동 중의 하나이다. 그럼에도 불구하고 국내에서는 과학문장 읽기에 대한 연구가 거의 없었다. 이에 본 연구에서는 문헌 연구를 통해 6개(소항목 10개)로 구성된 과학문장의 구성요소와 5개 (소항목 18개)로 구성된 과학문장의 기능에 대한 종합적인 리스트를 제안하였다. 그리고 과학문장의 구조와 흥미, 친숙도, 비유 등이 과학문장 이해에 미치는 영향을 문헌 조사하여 종합 정리하였다. 본 연구는 과학문장 읽기에 대한 일련의 연구의 첫출발이다. 따라서 어떠한 후속연구가 진행되고 또 진행될 것인지도 함께 소개하였다.

비인식 대상 문장 거부 기능을 위한 음소 기반 인식 네트워크의 구성에 관한 연구 (Research on Recognition Network Structures for Non-recognition Sentence Rejection)

  • 이병혁;하진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.772-774
    • /
    • 2004
  • 음성인식 시스템에서 입력된 음성 데이터에 대해 비인식 대상에 대한 거부기능은 신뢰도 보장 측면에서 상당히 중요하다. 비인식 대상의 단어 거부는 지금까지 여러 연구가 이루어져 왔으나, 문장 거부에 대한 연구는 사실상 부족한 실정이다. 본 논문에서는 비인식 대상 문장 거부기능의 신뢰도를 한층 높일 수 있도록 음소 기반 네트워크에 유성자음(VC), 무성자음(C), 모음(V) 단위의 필러 음향 모델을 생성하여 다양한 음소기반 인식 네트워크의 구성방법을 적용하여 비인식 대상 문장에 대해 거부 기능을 구현하고, 그에 따라 인식률과 거부율이 달라질 수 있음을 보인다. 구현된 시스템에서 제안한 3가지 음소단위 인식 네트워크 중 문장의 각 단어별 필러 모델을 구성했을 때가 가장 좋은 구성임을 알 수 있었다.

  • PDF