• 제목/요약/키워드: 문자 탐지

검색결과 99건 처리시간 0.026초

양방향 특징 결합을 이용한 효율적 문자 탐지 모델 (An Efficient Text Detection Model using Bidirectional Feature Fusion)

  • 임성택;최회련;이홍철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.67-68
    • /
    • 2021
  • 기존 객체탐지는 경계 상자 회귀방식을 적용하였지만, 문자는 왜곡과 변형이 심한 특성을 가진 객체로 U-net 구조의 이미지 분할 방식을 사용하는 경우가 많다. 따라서 최근 문자 탐지는 통계적 모델에 비해 높은 정확도를 보이는 심층 신경망 기반의 모델 연구가 많이 진행되고 있다. 본 연구에서는 이미지 분할을 통한 양방향 특징 결합 기법을 사용한 문자 탐지 모델을 제안한다. 이미지 분할 방식은 메모리의 효율이 떨어지기 때문에 이를 극복하고자 특징 추출 단계에서 경량화된 네트워크를 적용하였다. 또한, 객체 탐지에서 큰 성과를 보인 양방향 특징 결합 모듈을 U-net 구조에 추가하여 추출된 특징이 효과적으로 결합 되는 결과를 얻었다. 제안하는 모델의 문자 탐지 성능은 합성 문자 데이터셋을 이용한 실험을 통해 기존의 U-net 구조의 이미지 분할 방식보다 향상되었음을 확인하였다.

  • PDF

YOLO, EAST: 신경망 모델을 이용한 문자열 위치 검출 성능 비교 (YOLO, EAST : Comparison of Scene Text Detection Performance, Using a Neural Network Model)

  • 박찬용;임영민;정승대;조영혁;이병철;이규현;김진욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.115-124
    • /
    • 2022
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 일반적으로 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 실험결과 YOLOv3는 문자열 탐지에 비교적 약점을 보이지만 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하였다. 따라서, 이들 YOLO 신경망 기반 문자열 탐지방법이 향후 문자 인식 분야에서 많이 활용될 것으로 전망한다.

딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법 (A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning)

  • 김가현 ;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

이미지 속 문자열 탐지에 대한 YOLO와 EAST 신경망의 성능 비교 (A Comparison of Deep Neural Network based Scene Text Detection with YOLO and EAST)

  • 박찬용;이규현;임영민;정승대;조영혁;김진욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.422-425
    • /
    • 2021
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 v3 이전 모델까지는 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하고 향후 문자 인식 분야에서 많이 활용될 것으로 기대된다.

DCT계수와 천이지도 분석을 이용한 개선된 영상 내 자막영역 검출방법 (An Improved Method for Detecting Caption in image using DCT-coefficient and Transition-map Analysis)

  • 안권재;주성일;김계영;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.61-71
    • /
    • 2011
  • 본 논문은 DCT계수와 천이지도 분석을 이용하여 영상 내 자막영역을 검출하는 방법에 대해 제안한다. 기존 DCT계수 분석방법을 이용한 문자영역탐지 방법은 검출률은 높으나 오검출률이 매우 높은 단점이 있고, 천이지도를 이용한문자영역 탐지 방법은 임계값이 정적이기때문에 문자영역 검증단계에서 실제문자영역이 기각되는 일이 빈번히 발생한다. 이러한 문제점을 해결하기 위해 DCT계수 분석방법을 이용하여 유망문자영역맵을 작성하고 이를 천이지도를 이용한 문자영역탐지 방법에 적용하여 임계값을 단계별로 정한다. 그 결과로서 DCT계수 분석을 이용한 문자영역검출방법에 비해 오검출률이 크게 감소하였으며, 기존 천이지도를 이용한 문자영역검출 방법보다 검출률이 크게 향상되었다.

동시출현 단어분석 기반 스팸 문자 탐지 기법 (Coward Analysis based Spam SMS Detection Scheme)

  • 오하영
    • 정보보호학회논문지
    • /
    • 제26권3호
    • /
    • pp.693-700
    • /
    • 2016
  • 스팸 데이터 셋은 통상적으로 공개적으로 구하기 어렵고 기존 연구들은 대부분 스팸 이메일에 초점이 맞춰져 왔기 때문에 스팸 문자 메시지 자체 특성을 분석하는데 한계가 있었다. 스팸 이메일 특성 분석 활용 및 데이터 마이닝 기법 등의 활용을 통한 기존 연구들이 있었지만, 영향력이 높은 단일 단어를 활용한 스팸 문자 탐지 기법에 한정되어 있다는 한계점이 있다. 본 논문에서는 싱가폴 대학교에서 공개적으로 공개한 스팸 문자메시지를 다 각도에서 실험 및 분석하여 스팸 문자의 특성을 밝히고 동시출현 단어분석 기반의 스팸 문자 탐지 기법을 제안한다. 성능평가 결과, 제안하는 기법의 거짓 양성과 거짓 음성이 2%미만임을 보였다.

모바일 기반 Air Writing을 위한 객체 탐지 및 광학 문자 인식 방법 (Object Detection and Optical Character Recognition for Mobile-based Air Writing)

  • 김태일;고영진;김태영
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권5호
    • /
    • pp.53-63
    • /
    • 2019
  • 모바일 환경에서 딥러닝을 통한 손 제스처 인터페이스를 제공하려면 높은 인식률을 제공하면서 실행속도의 저하를 막기 위한 네트워크 경량화의 연구가 필수적이다. 본 논문은 딥러닝 모델의 경량화를 통해 모바일 기기에서 손가락을 이용하여 공중에 쓴 문자를 실시간으로 인식하는 방법을 제안한다. MobileNet을 특징 추출기로 활용하는 객체 탐지 모델인 SSD (Single Shot Detector)를 기반으로 집게손가락을 탐지하고 손끝 경로를 이어 결과문자 영상을 생성한다. 이 영상은 서버로 전송되어 정규화 과정을 수행한 다음 학습된 OCR 모델을 이용하여 문자를 인식한다. 본 방법을 검증하기 위하여 12명의 사용자가 GALAXY S10+ 기기를 사용하여 1,000개의 단어를 실험한 결과 평균 88.6%의 정확도로 손가락을 인식하고 124 ms 이내로 인식된 텍스트가 출력되어 실시간으로 활용 가능함을 알 수 있었다. 본 연구결과는 모바일 환경에서 손가락을 이용한 간단한 문자 전송, 메모 및 공중 서명 등에 활용될 수 있다.

모바일 게임용 안드로이드 에뮬레이터 탐지 기법 (Nox와 LD Player 탐지 기법 중심으로) (Detecting Android Emulators for Mobile Games (Focusing on Detecting Nox and LD Player))

  • 김남수;김성호;박민수;조성제
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.41-50
    • /
    • 2021
  • 많은 게임 앱이나 금융 앱들의 경우, 동적 역공학 공격을 방어하기 위해 에뮬레이터 탐지 기능을 탑재하고 있다. 그러나 기존 안드로이드 에뮬레이터 탐지 방법들은, 실제 기기와 유사해진 최신 모바일 게임용 에뮬레이터를 탐지하는데 한계가 있다. 이에 본 논문에서는 Houdini 모듈과 라이브러리 문자열 기반으로 모바일 게임용 에뮬레이터를 효과적으로 탐지하는 기법을 제안한다. 구체적으로, bionic의 libc 라이브러리에 포함된 특정 문자열, Houdini 관련된 시스템 콜 수행과정 분석과 메모리 매핑을 통해, 잘 알려진 Nox와 LD Player 에뮬레이터를 탐지하는 기법을 제시한다.

EAST 모델과 OCR을 이용한 실시간 문자 탐지 시스템 (Real-time Character Detection System Using EAST Model and OCR)

  • 최예준;문미경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.683-684
    • /
    • 2023
  • 웹페이지나 디지털 문서에는 특정 단어나 특정 문구를 검색하는 기능이 있다. 인쇄된 도서나 참고서 등과 같은 인쇄물에는 실시간으로 특정 단어나 특정 문구를 찾는 기능이 없어 어려움을 겪는 경우가 많다. 본 논문에서는 텍스트를 감지(Detection)하는 EAST 모델과 텍스트를 인식(Recognition)하는 EasyOCR을 활용한 실시간 문자 탐지 시스템의 개발내용에 대해 기술한다. 이 시스템을 통해 사용자는 인쇄물에서 실시간으로 원하는 단어나 문구를 찾아 필요한 정보를 빠르게 읽는 것에 효과적일 것을 기대한다.

  • PDF

자동 지식베이스 추출 기반 스미싱 SMS 탐지 (Automatic knowledgebase extraction based smishing SMS detection)

  • 백성빈;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.564-567
    • /
    • 2021
  • 스미싱은 SMS 문자를 통해 피해자를 현혹시켜 개인정보나 금전 등을 갈취하는 범죄이다. 발전하는 스미싱 범죄 수법에 대응하기 위해선 새로운 스미싱 범죄 사례에서 데이터를 추출하고, 추출한 데이터를 기존 시스템에 통합하여 빠르게 대응할 수 있어야 한다. 본 연구에서는 빠른 스미싱 대응을 위해 전처리를 하지 않은 SMS 문자 텍스트에서 지식베이스를 자동으로 추출하고 저장하는 자동 지식베이스 추출 모듈을 제안하며, 추출 시스템 지식베이스를 바탕으로 입력된 SMS가 스미싱인지 판별하는 스미싱 SMS 탐지 모듈을 통합한 자동 지식베이스 추출 기반 스미싱 SMS 탐지 시스템을 제시한다. 제시된 스미싱 SMS 탐지 모델은 UCI SMS Spam Collection Dataset을 기준으로 90.9 (F1 score)의 성능을 보여주었다.

  • PDF