• Title/Summary/Keyword: 문서빈도

Search Result 328, Processing Time 0.029 seconds

Rank-Size Distribution with Web Document Frequency of City Name : Case study with U.S incorporated places of 100,000 or more population (인터넷 문서빈도를 통해 본 도시순위규모에 관한 연구 -미국 10만 이상의 인구를 갖는 도시들을 사례로-)

  • Hong, Il-Young
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.3
    • /
    • pp.290-300
    • /
    • 2007
  • In this study, web document frequency of city place name is analyzed and it is used as the dataset for rank-size analysis. The search keywords are compared in the context of spatial meaning and the different domain corpus is applied. The acquired search results are applied for the further analysis. Firstly, the rank-size analysis is applied to compare the result between population and document frequency. Secondly, in case of correlation analysis, the significant changes are revealed when the spatial criteria for search keywords are increased. In case of corpus, COM, NET, and ORG shows the higher coefficient values. Lastly, the cluster analysis is applied to classify the list of cities that shows the similarity and difference. These analyses have a significant role in representing the rank-size distribution of city names that are reflected on the web documents in the information society.

  • PDF

Neural Based Approach to Keyword Extraction from Documents (문서의 키워드 추출에 대한 신경망 접근)

  • 조태호;서정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.317-319
    • /
    • 2000
  • 문서는 자연어로 구성된 비정형화된 데이터이다. 이를 처리하기 위하여 문서를 정형화된 데이터로 표현하여 저장할 필요가 있는데, 이를 문서 대용물(Document Surrogate)라 한다. 문서 대용물은 대표적으로 인덱싱 과정에 의해 추출된 단어 리스트를 나타낸다. 문서 내의 모든 단어가 내용을 반영하지 않는다. 문서의 내용을 반영하는 중요한 단어만을 선택할 필요가 있다. 이러한 단어를 키워드라 하며, 기존에는 단어의 빈도와 역문서 빈도(Inverse Document Frequency)에 근거한 공식에 의해 키워드를 선택하였다. 실제로 문서내 빈도와 역문서 빈도뿐만 아니라 제목에 포함 여부, 단어의 위치 등도 고려하여야 한다. 이러한 인자를 추가할 경우 이를 수식으로 표현하기에는 복잡하다. 이 논문에서는 이를 단어의 특징으로 추출하여 특징벡터를 형성하고 이를 학습하여 키워드를 선택하는 신경망 모델인 역전파의 접근을 제안한다. 역전파를 이용하여 키워드를 판별한 결과 수식에 의한 경우보다 그 성능이 향상되었음을 보여주고 있다.

  • PDF

Implementation of the Text Abstraction System using the Statistical Information of Korean Documents (한국어 문서의 통계적 정보를 이용한 문서 요약 시스템 구현)

  • Kang, Sang-Bae;Cho, Hyuk-Kyu;Kwon, Hyuk-Chul;Park, Jae-Deuk;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.28-33
    • /
    • 1997
  • 이 논문에서는 문장 유사도 측정 기법과 말뭉치 정보를 이용한 문서요약 시스템을 구현하였다. 문서 요약은 문서에서 문장 단위로 단어를 추출하여 문장을 단어의 벡터로 표현하고, 문서 내 단어의 출현빈도와 말뭉치 내 단어의 사용빈도를 이용하여 각 문장의 중요도를 계산한다. 그리고 중요도가 높은 상위 몇 위의 문장을 요약문장으로 추출한다. 실험 결과, 문서내 단어빈도의 중요도를 낮추고, 말뭉치내 일반 사용빈도를 단어의 가중치에 추가했을 때 가장 좋은 효율을 보였다. 또 요약하고자 하는 문서와 유사한 말뭉치를 사용 했을 때 높은 효율을 보였다.

  • PDF

Automatic Text Categorization by using Normalized Term Frequency Weighting (정규화 용어빈도가중치에 의한 자동문서분류)

  • 김수진;김민수;백장선;박혁로
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.510-512
    • /
    • 2003
  • 본 논문에서는 문서의 자동 분류를 위한 용어 빈도 가중치 계산 방법으로 Box-Cox변환기법을 응용한 정규화 용어빈도 가중치를 정의하고, 이를 문서 분류에 적응하였다. 여기서 Box-Cox 변환기법이란 자료를 정규분포화 할 때 적용하는 통계적인 변환방법으로서, 본 논문에서는 이를 응용하여 새로운 용어빈도가중치 계산법을 제안한다. 문서에서 등장한 용어 빈도는 너무 많거나 적게 등장할 경우, 중요도가 떨어지게 되는데, 이는 용어의 중요도가 빈도에 따른 정규분포로 모델링 될 수 있다는 것을 의미한다. 또한 정규화 가중치 계산방법은 기존의 용어빈도 가중치 공식과 비교할 때, 용어마다 계산방법이 달라져, 로그나 루트와 같은 고정된 가중치 방법보다는 좀더 일반적인 방법이라 할 수 있다. 신문기사 8000건을 대상으로 4개의 그룹으로 나누어 실험 한 결과, 정규화 용어빈도가중치 계산방법이 모두 우위의 분류 정확도롤 가져, 본 논문에서 제안한 방법이 타당함을 알 수 있다.

  • PDF

Automatic Text Categorization by Term Weighting and Inverted Category Frequency (용어 가중치와 역범주 빈도에 의한 자동문서 범주화)

  • Lee, Kyung-Chan;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.14-17
    • /
    • 2003
  • 문서의 확률을 이용하여 자동으로 문서를 분류하는 문서 범주화 기법의 대표적인 방법이 나이브 베이지언 확률 모델이다. 이 방법의 기본 형식은 출현 용어의 확률 계산 방법이다. 하지만 실제 문서 범주화 과정에서 출현하지 않는 용어들도 성능에 많은 영향을 줄 수 있으며, 출현 용어들에 대한 빈도 이외의 역범주 빈도나 용어가중치를 적용하여 문서 범주화 시스템의 성능을 향상시킬 수 있다. 본 논문에서는 나이브 베이지언 확률 모델에 출현 용어와 출현하지 않는 용어들에 대한 smoothing 기법을 적용하여 실험하였다. 성능 평가를 위해 뉴스그룹 문서들을 이용하였으며, 역범주 빈도와 가중치를 적용했을 때 나이브 베이지언 확률 모델에 비해 약 7% 정도 성능 개선 효과가 있었다.

  • PDF

Automatic Document Categorization by the Importance of Features (자질 중요도 계산 기법에 의한 자동문서 범주화)

  • 이경찬;강승식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.537-539
    • /
    • 2003
  • 문서 범주화를 위해 자질을 선별하는 기법으로는 자질의 출현 빈도에 따라 범주를 대표하는 자질들을 선별하는 것이 일반적이다. 출현 빈도에 의한 자질을 선별하는 통계적인 기법은 문서의 내용을 대표하는 용어들의 중요도를 간과하는 문제가 발생한다. 본 논문에서는 학습 문서 및 실험 문서에서 자질의 중요도에 의해 범주 대표어를 선별하는 문서 범주화 기법을 제안하였으며, 역범주 빈도 및 카이제곱 통계량에 의해 자질을 선별하는 방법과 비교-실험을 하였다. 문서 범주화 모델로는 나이브 베이지언 확률 모델을 이용하였으며, 성능 평가를 위해서 웹 디렉토리에서 수집된 데이터를 이용하여 실험하였다. 본 논문에서 제안한 자질 중요도에 의한 자질 선별 기법은 용어의 출현 빈도 및 카이제곱 통계량에 의해 자질을 선별한 방법보다 더 나은 성능을 보였다.

  • PDF

Classification of Web Documents Using Associative Word Frequency for Collaborative Filtering (협력적 필터링을 위해 연관 단어 빈도를 이용한 웹 문서 분류)

  • 하원식;정경용;정헌만;류중경;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.160-162
    • /
    • 2004
  • 기존의 웹 문서 분류 시스템서는 많은 시간과 노력을 요구하며, 연관 단어가 아닌 단일 단어만으로 웹 문서들을 분류하여 단어의 중의성을 반영하지 못해 많은 오분류가 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 협력적 필터링을 위한 연관 단어 빈도를 사용한 웹 문서 분류 방법을 제안한다. 제안된 방법에서는 웹 문서 내에서 단어들을 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘에 의해 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 반영한다. 수정된 신뢰도를 ARHP 알고리즘에 적용하여 연관 단어들 사이의 유사정도를 계산하고 유사 클래스를 구성한다 생성된 유사 클래스들을 기반으로 웹 문서를 $\alpha$-cut을 이용하여 분류한다 성능평가를 위해 기존의 문서 분류 방법들과 비교 평가를 하였다.

  • PDF

Comparison of Term-Weighting Schemes for Environmental Big Data Analysis (환경 빅데이터 이슈 분석을 위한 용어 가중치 기법 비교)

  • Kim, JungJin;Jeong, Hanseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.236-236
    • /
    • 2021
  • 최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.

  • PDF

The Generation Methods of Composition Noun For Efficient Index Term Extraction (고빈도어를 이용한 복합명사 색인어 추출 방안)

  • Kim, Mi-Jin;Park, Mi-Seong;Jang, Hyeok-Chang;Choi, Jae-Hyeok;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.121-129
    • /
    • 1998
  • 정보검색이나 자동색인 시스템에서는 정확한 색인어의 추출이 시스템의 성능을 좌우하게 된다. 따라서 정확한 색인어의 추출이 매우 중요하다. 본 논문에서는 정보 검색시에 보다 정확한 문서를 찾아줄 수 있도록, 출현 고빈도어를 이용하여 효율적인 색인어 추출을 위한 합성 명사 생성방안을 제시한다. 이를 위하여 문서 내에서 출현 빈도가 높은 명사, 즉 상위 $30%{\sim}40%$의 고빈도 명사에 합성 및 분해 규칙을 적용하여 합성명사 색인어를 추출한다. 또한 본 논문에서 제시한 상위 $30%{\sim}40%$ 고빈도 명사합성에 대한 타당성을 검증하기 위하여 적절한 명사합성 빈도를 구한다. 제안한 방법을 적용한 결과 300어절 이하의 짧은 문서는 출현빈도 상위 30%까지의 명사를 합성했을 경우 저빈도 누락이 작았고 300어절 이상의 문서는 출현빈도 40%까지 합성하면 저빈도 누락이 상당히 줄어듦을 알 수 있었다. 그리하여 전체 색인어의 개수를 줄였고 색인어의 정확률을 높였다.

  • PDF

Performance Comparison of Keyword Extraction Methods for Web Document Cluster using Suffix Tree Clustering (Suffix Tree를 이용한 웹 문서 클러스터의 제목 생성 방법 성능 비교)

  • 염기종;권영식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.328-335
    • /
    • 2002
  • 최근 들어 인터넷 기술의 발달로 웹 상에 많은 자료들이 산재해 있습니다. 사용자가 원하는 정보를 검색하기 위해서 키워드 검색을 이용하고 있는데 이러한 키워드 검색은 사용자들이 입력한 단편적인 정보에 바탕하여 검색하고 검색된 결과들을 자체적인 기준으로 순위를 매겨 나열식으로 제시하고 있다. 이러한 경우 사용자들의 생각과는 다르게 결과가 제시될 수 있다. 따라서 사용자들의 검색 시간을 줄이고 편리하게 검색하기 위한 환경의 필요성이 높아지고 있다. 본 논문에서는 Suffix Tree 알고리즘을 사용하여 관련있는 문서들을 분류하고 각각의 분류된 클러스터에 제목을 생성하기 위하여 문서 빈도수, 단어 빈도수와 역문서 빈도수, 카이 검정, 공통 정보, 엔트로피 방법을 비교 평가하여 제목을 생성하는데 어떠한 방법이 가장 효과적인지 알아보기 위해 비교 평가해본 결과 문서빈도수가 TF-IDF보다 약 10%정도 성능이 좋은 결과를 보여주었다.

  • PDF