Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2000.10b
- /
- Pages.317-319
- /
- 2000
- /
- 1598-5164(pISSN)
Neural Based Approach to Keyword Extraction from Documents
문서의 키워드 추출에 대한 신경망 접근
Abstract
문서는 자연어로 구성된 비정형화된 데이터이다. 이를 처리하기 위하여 문서를 정형화된 데이터로 표현하여 저장할 필요가 있는데, 이를 문서 대용물(Document Surrogate)라 한다. 문서 대용물은 대표적으로 인덱싱 과정에 의해 추출된 단어 리스트를 나타낸다. 문서 내의 모든 단어가 내용을 반영하지 않는다. 문서의 내용을 반영하는 중요한 단어만을 선택할 필요가 있다. 이러한 단어를 키워드라 하며, 기존에는 단어의 빈도와 역문서 빈도(Inverse Document Frequency)에 근거한 공식에 의해 키워드를 선택하였다. 실제로 문서내 빈도와 역문서 빈도뿐만 아니라 제목에 포함 여부, 단어의 위치 등도 고려하여야 한다. 이러한 인자를 추가할 경우 이를 수식으로 표현하기에는 복잡하다. 이 논문에서는 이를 단어의 특징으로 추출하여 특징벡터를 형성하고 이를 학습하여 키워드를 선택하는 신경망 모델인 역전파의 접근을 제안한다. 역전파를 이용하여 키워드를 판별한 결과 수식에 의한 경우보다 그 성능이 향상되었음을 보여주고 있다.
Keywords