• Title/Summary/Keyword: 문맥독립모델

Search Result 36, Processing Time 0.028 seconds

User Adjustment Post-Process Using Neural Network In Isolated Word Speech Recognition (고립단어 음성인식에서 신경망을 이용한 사용자 적응형 후처리)

  • Kim, Young-Jin;Kim, Eun-Ju;Kim, Myoung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.736-738
    • /
    • 2005
  • 최근 PDA나 PMP와 같은 개인용 모바일 기기의 인터페이스 개발로써 잡음환경에 강인한 음성인식 기술들이 연구되고 있으며 이러한 방법으로 오류패턴, 순차패턴, 의미정보, 문맥정보와 같이 인식기에 독립적인 정보를 이용하거나 영상 정보와 같이 언어와 성격이 다른 이질적인 정보를 이용하여 후처리를 하는 연구들이 진행되어 왔다. 그러나 인식기와 독립적인 정보로 후처리를 하는 방법들의 인식률은 인식기의 사전 인식률이 주변 잡음에 의해 떨어질 경우 후처리 인식률도 같이 떨어지는 현상이 벌어진다. 따라서 본 논문에서는 주변 잡음으로 인한 인식기의 사전 인식률에 저하를 줄이는 방법으로 사용자 적응형 후처리를 제안한다. 사용자 적응형 후처리에 사용되는 데이터는 사용자의 발화에 대한 인식기의 출력 값들이며, 출력 값들은 화자독립모델에 의해 계산되는 각 단어들의 유사도 들이다. 따라서 화자독립모델의 결과를 사용자 적응형 후처리에 적용한 결과 인식기의 오류를 $58.7\%$ 줄일 수 있었다.

  • PDF

Performance Improvement in GMM-based Text-Independent Speaker Verification System (GMM 기반의 문맥독립 화자 검증 시스템의 성능 향상)

  • Hahm Seong-Jun;Shen Guang-Hu;Kim Min-Jung;Kim Joo-Gon;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.131-134
    • /
    • 2004
  • 본 논문에서는 GMM(Gaussian Mixture Model)을 이용한 문맥독립 화자 검증 시스템을 구현한 후, arctan 함수를 이용한 정규화 방법을 사용하여 화자검증실험을 수행하였다. 특징파라미터로서는 선형예측방법을 이용한 켑스트럼 계수와 회귀계수를 사용하고 화자의 발성 변이를 고려하여 CMN(Cepstral Mean Normalization)을 적용하였다. 화자모델 생성을 위한 학습단에서는 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하였고 화자 검증단에서는 ML(Maximum Likelihood)을 이용하여 유사도를 계산하고 기존의 정규화 방법과 arctan 함수를 이용한 방법에 의해 정규화된 점수(score)와 미리 정해진 문턱값과 비교하여 검증하였다. 화자 검증 실험결과, arctan 함수를 부가한 방법이 기존의 방법보다 항상 향상된 EER을 나타냄을 확인할 수 있었다.

  • PDF

Realization a Text Independent Speaker Identification System with Frame Level Likelihood Normalization (프레임레벨유사도정규화를 적용한 문맥독립화자식별시스템의 구현)

  • 김민정;석수영;김광수;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • In this paper, we realized a real-time text-independent speaker recognition system using gaussian mixture model, and applied frame level likelihood normalization method which shows its effects in verification system. The system has three parts as front-end, training, recognition. In front-end part, cepstral mean normalization and silence removal method were applied to consider speaker's speaking variations. In training, gaussian mixture model was used for speaker's acoustic feature modeling, and maximum likelihood estimation was used for GMM parameter optimization. In recognition, likelihood score was calculated with speaker models and test data at frame level. As test sentences, we used text-independent sentences. ETRI 445 and KLE 452 database were used for training and test, and cepstrum coefficient and regressive coefficient were used as feature parameters. The experiment results show that the frame-level likelihood method's recognition result is higher than conventional method's, independently the number of registered speakers.

  • PDF

Performance Improvement of Variable Vocabulary Speech Recognizer (가변어휘 음성인식기의 성능개선)

  • Kim Seunghi;Kim Hoi-Rin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.21-24
    • /
    • 1999
  • 본 논문에서는 가변어휘 음성인식기의 성능개선 작업에 관한 내용을 기술하고 있다. 묵음을 포함한 총 40개의 문맥독립 음소모델을 사용한다. LDA 기법을 이용하여 동일차수의 특징벡터내에 보다 유용한 정보를 포함시키고, likelihood 계산시 가우시안 분포와 mixture weight에 대한 가중치를 달리 함으로써 성능향상을 볼 수 있었다. ETRI POW 3848 DB만을 사용하여 실험한 경우, $21.7\%$의 오류율 감소를 확인할 수 있었다. 잡음환경 및 어휘독립환경을 고려하여 POW 3848 DB와 PC 168 DB 및 PBW445 DB를 사용한 실험도 행하였으며, PBW 445 DB를 사용한 어휘독립 인식실험의 경우 $56.8\%$의 오류율 감소를 얻을 수 있었다.

  • PDF

Performance Evaluation of the Variable Vocabulary Speech Recognition System in the Noisy and Vocabulary-Independent Environments (잡음환경 및 어휘독립 환경에서의 가변어휘 음성인식기의 성능 분석)

  • 이승훈
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.56-59
    • /
    • 1998
  • POW 3848 DB 및 SNR 이 크게 다른 2 종류의 PC168 DB를 대상으로 가변어휘 음성인식 시스템을 이용하여 훈련 및 성능 평가 실험을 수행한 내용에 대해서 기술하고 있다. 실험의 목적은 위의 3종류의 DB를 조합하여 얻은 DB 환경하에서 인식기를 훈련시키면서, DB 의 조합 및 훈련방법에 따른 인식기의 성능과의 상관관계를 도출하고자 하였다. DB 의 조합은 POW DB 와 SNR 이 높은 PC DB , 및 3종류의 DB 모두로 구성하였다. 인식기는 40개의 음소로 구성된 문맥 독립형 SCHMM 모델이며, 각 음소당 3개의 상태로 이루어져 있다. 실험 결과, 대부분의 경우에서 ITERATION이 1.0인 경우에 최고 인식률을 나타내고 있으며, INTERATION 이 3.0 이상인 경우에는 항상 CASE 3의 실험방법이 우세한 결과를 나타내었다. 또한 CASE 1으로 훈련한 경우가 CASE 2 보다는 각각의 실험 DB 에 대해서 대체적으로 좋은 결과를 보였다.

  • PDF

Semantic Integration of Databases Based on the Multi-Aspect Semantic Model (다중 측면 의미 모델에 기반한 데이터베이스의 의미 통합)

  • 이정욱;김중일;이종혁;백두권
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.283-285
    • /
    • 1998
  • 현재의 멀티데이터베이스 시스템에서 고려해야 할 중요한 문제중의 하나는 의미 이질성(semantic heterogeneity)을 식별하고 해결하는 것이다. 본 논문에서는 이를 위하여, 다중 측면 의미 모델(Multi-Aspect Semantic Model:MASM)을 제시하고 이에 기반한 의미 통합 방법을 제시한다. MASM은 의미 특징(semantic feature), 스키마 측면(schematic aspect), 명칭(name), 기능적 측면(functional aspect), 문맥(context) 등의 여러 요소들을 고려한 모델이며, 모든 요소 데이터베이스간에 공유되어야 하는 표준화된 지식 없이 객체간의 의미 유사성을 판단한다. 정보 통합에 필요한 모든 지식은 각 요소 데이터베이스에서 다른 요소 데이터베이스에 독립적으로 구축되며, 이를 통하여 융통성과 확장성을 갖는 멀티데이터베이스 시스템을 구축하는 토대를 마련한다.

A Variable Parameter Model based on SSMS for an On-line Speech and Character Combined Recognition System (음성 문자 공용인식기를 위한 SSMS 기반 가변 파라미터 모델)

  • 석수영;정호열;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.528-538
    • /
    • 2003
  • A SCCRS (Speech and Character Combined Recognition System) is developed for working on mobile devices such as PDA (Personal Digital Assistants). In SCCRS, the feature extraction is separately carried out for speech and for hand-written character, but the recognition is performed in a common engine. The recognition engine employs essentially CHMM (Continuous Hidden Markov Model), which consists of variable parameter topology in order to minimize the number of model parameters and to reduce recognition time. For generating contort independent variable parameter model, we propose the SSMS(Successive State and Mixture Splitting), which gives appropriate numbers of mixture and of states through splitting in mixture domain and in time domain. The recognition results show that the proposed SSMS method can reduce the total number of GOPDD (Gaussian Output Probability Density Distribution) up to 40.0% compared to the conventional method with fixed parameter model, at the same recognition performance in speech recognition system.

Gaussian Optimization of Vocabulary Recognition Clustering Model using Configuration Thread Control (형상 형성 제어를 이용한 어휘인식 공유 모델의 가우시안 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • In continuous vocabulary recognition system by probability distribution of clustering method has used model parameters of an advance estimate to generated each contexts for phoneme data surely needed but it has it's bad points of gaussian model the accuracy unsecure of composed model for phoneme data. To improve suggested probability distribution mixed gaussian model to optimized that phoneme data search supported configuration thread system. This paper of configuration thread system has used extension facet classification user phoneme configuration thread information offered gaussian model the accuracy secure. System performance as a result of represent vocabulary dependence recognition rate of 98.31%, vocabulary independence recognition rate of 97.63%.

An Implementation of Rejection Capabilities in the Isolated Word Recognition System (고립단어 인식 시스템에서의 거절기능 구현)

  • Kim, Dong-Hwa;Kim, Hyung-Soon;Kim, Young-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.106-109
    • /
    • 1997
  • For the practical isolated word recognition system, the ability to reject the out-of -vocabulary(OOV) is required. In this paper, we present a rejection method which uses the clustered phoneme modeling combined with postprocessing by likelihood ratio scoring. Our baseline speech recognition system was based on the whole-word continuous HMM. And 6 clustered phoneme models were generated using statistical method from the 45 context independent phoneme models, which were trained using the phonetically balanced speech database. The test of the rejection performance for speaker independent isolated words recogntion task on the 22 section names shows that our method is superior to the conventional postprocessing method, performing the rejection according to the likelihood difference between the first and second candidates. Furthermore, this clustered phoneme models do not require retraining for the other isolated word recognition system with different vocabulary sets.

  • PDF

Modified Weighting Model Rank Method for Improving the Performance of Real-Time Text-Independent Speaker Recognition System (실시간 문맥독립 화자인식 시스템의 성능향상을 위한 수정된 가중모델순위 결정방법)

  • Kim Min-Joung;Oh Se-Jin;Suk Su-Young;Chung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.107-110
    • /
    • 2002
  • 현재까지 개발된 화자식별 시스템 중 가중모델순위(Weighting Model Rank; WMR)방법을 이용한 화자인식 시스템이 비교적 높은 인식성능을 나타내고 있다. WMR 방법은 각 화자에 대한 프레임 유사도의 순위에 따라 지수함수 가중치로 대치시키는 방법을 사용하고 있으나, 이 방법은 유사도 본래의 변별력이 전체 계산에서 고려되지 않는 문제가 있었다. 이를 해결하기 위해 본 논문에서는 각 화자의 프레임 유사도와 지수함수를 이용한 가중치를 곱한 값을 이용하여 전체 스코어를 계산하도록 하는 수정된 가중모델 순위방법(Modified Weighting Model Rank; MWMR)을 제안한다. 제안한 방법의 유효성을 확인하기 위하여 316명의 화자를 대상으로 하여 인식실험을 실시한 결과, 학습 프레임이 10,000일 경우, MWMR 방법에서 $98.1\%$의 화자 인식률을 얻어 WMR 방법에 비해 약 $2.0\%$의 향상된 인식결과를 보여 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF