• Title/Summary/Keyword: 무인 비행기

Search Result 51, Processing Time 0.024 seconds

Validation of Mathematical Models of UAV by Using the Parameter Estimation for Nonlinear System (비선형 시스템식별에 의한 무인비행기의 수학적 모델 적합성)

  • Lee, Hwan;Choi, Hyoung-Sik;Seong, Kie-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.927-932
    • /
    • 2007
  • The sophisticated mathematical model is required for the design and the database construction of the advanced flight control system of UAV. In this paper, flight test of KARI's research UAV, often called DURUMI-II, is implemented for the data acquisition from the maneuver flight. The flight path reconstruction is implemented to ensure that the measured data is consistent and error free. The nonlinear system identification for the refined mathematical modeling is implemented with the verified measurements from the flight path reconstruction. The simulation with the identified results have a good validation when the simulated responses were compared to the flight tested data.

Trends of GNSS Augmentation System and Its Technologies (위성항법 보강시스템 및 기술동향)

  • Lee, S.U.;Hyoung, C.H.;You, M.H.;Sin, C.S.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.3
    • /
    • pp.20-31
    • /
    • 2016
  • 위성항법 보강시스템은 항법위성인 GPS 제공 항법신호를 수신 처리하여 각종 오차 성분을 제거시킴으로써 산출된 위치정확도, 시스템 가용도 및 제공신호에 대한 무결성 등이 향상됨에 따라 항공분야, 해양분야 및 차량내비 등 육상분야에서 요구하는 위치정확도뿐만 아니라 보강 및 무결정정보 등을 특정 성능 요구를 만족시킬 수 있도록 제공하는 시스템이다. GPS 신호에 대한 오차를 보강한 메시지를 활용하는 매체를 무엇을 활용하는지에 따라 구분할 수 있는데 위성을 이용하면 위성기반 보강시스템(Satellite Based Augmentation System: SBAS), 지상망을 이용하면 지상기반 보강시스템(Ground Based Augmentation System: GBAS), 비행기를 이용하면 항공기반보강시스템(Aircraft-Based Augmentation System: ABAS)으로 일컫는다. 본고에서는 위성항법 보강시스템의 현황과 그 관련 기술에 대하여 기술하고 한다.

  • PDF

Differences in the Soundscape Characteristics of a Natural Park and an Urban Park (자연공원과 도시공원의 Soundscape 특성 차이)

  • Gim, Ji-youn;Lee, Jae-Yoon;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.112-118
    • /
    • 2017
  • The purpose of this study is to clarify the characteristics of the soundscape in a natural park and an urban park. The study sites were a natural park (Chiaksan Nationalpark) and an urban park (Rose Park) in Wonju City, Gangwon Province. Soundscape recording was conducted using Digital Recorder from April 2015 to January 2016. The analysis period was 8 days per season, with a total of 64 days (2 places). Analysis items were soundscape's daily cycle, soundscape type, and seasonal variation. According to the result of the daily cycle analysis of the soundscape, the natural park was dominated by the biophony in accordance with the cycle of the sun, and the airplane sound was observed in the daytime. Meanwhile, anthrophony was consistently produced in the urban park 24 hours a day. As a result of the detailed type analysis of the soundscape, the sources of biophony were classified into wild birds, mammals, insects and amphibians, and the sources of geophony were classified into rain and wind. The anthrophony was mostly airplane sound. In the urban park, wild birds appeared to most influence the biophonic sounds while rain and the wind were the most frequent sounds that contribute to geophony. The most influential components of anthrophony in the urban park were in the order of automobiles, people, music, construction, cleaning, and airplane sound. As a result of the seasonal difference analysis of the soundscape, it was statistically significant that the natural park shows higher biophony in spring, summer, and autumn compared to the urban park. Anthrophony in the urban park appeared to be higher than the natural park in all seasons. The significance of this study is that it is the first study to identify the characteristics of the soundscape of a natural park and an urban park emanating from different landscapes in South Korea.

A Discussion on the Legal Definition and Legislation Methods of Drone Taxis (드론 택시의 법적 정의 및 법제화 방안 논의)

  • Choi, Ja-Seong;Baek, Jeong-seon;Hwang, Ho-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.491-499
    • /
    • 2020
  • There are policies that foster the drone industry, which either put a legal precedent on drones through the "Drone Act" or grant a delay or exemption in applying the safety measures of "the Aviation Safety Act". Yet, the definition of a drone is unclear, requiring further discussion on commercial usage. Therefore, we have studied cases domestically and abroad, and also analyzed issues with the current aviation legislation. It was found that a drone is defined as "an unmanned aircraft where a pilot is not on board, and its net weight is 150 kg or less". However, there are several issues, such as that a drone taxi requires a pilot on board, and its weight is 150 kg or more. Thus, we propose to define a drone as "an unmanned aerial vehicle (provided, that its own net weight should be 300 kg or under, or not be limited to weight) under Article 2 (3) of the "Aviation Security Act" as prescribed by Ordinance of the Ministry of Land, Infrastructure, and Transport, which operates either by remote, automatically, or autonomously; or an unmanned aircraft under Article 2 (6) of the "Aviation Security Act".

Ground Integrated Test for the Hybrid Electric Propulsion System (하이브리드 전기추진 시스템 지상통합시험)

  • Lee, Bo-Hwa;Kim, Young-Mun;Park, Poo-Min;Kim, Keun-Bae;Cha, Bong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.772-776
    • /
    • 2011
  • EAV-2, which has a solar cell, fuel cell and battery as its power sources, is under development by KARI. Electric power sources are selected through voltage matching without power converter and controller and tested. The ground integrated test for integrated system is performed during 5 hr. it is confirmed that battery's power response is faster than other power sources at starting and transient condition, fuel cell and solar cell are a major electrical power during cruise condition. It is revealed that the used energy portions of fuel cell, solar cell and battery are 68%, 29%, 2.5% respectively.

  • PDF

The Investigation of disaster damage using digital cameras (디지털 카메라를 이용한 재난피해정보 추출)

  • Kim Gi-Hong;Kim Hyung-Kyung;Hong Sung-Chang
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2006.05a
    • /
    • pp.152-157
    • /
    • 2006
  • Satellite imagery is generally used for investigating the damage from natural disaster for wide area and remotely piloted vehicle or aerial photos are used for the local damage. But for more detailed information such as damages of public facilities, these methods are inadequate and so in this case field surveying has been carried out. We tried to estimate the damage of public facilities faster and more accurately using photogrammetric method. We developed a digital stereo camera system by fixing two digital cameras on a frame, and with this system the photos of actually damaged areas were collected. The damages were estimated from these stereo photos. Then the estimated data was compared with field surveying data in order to verify our system.

  • PDF

Control Surface Fault Detection of the DURUMI-II by Real-Time System Identification (실시간 시스템 식별에 의한 두루미-II 조종면 고장진단)

  • Lee, Hwan;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2007
  • The goal of this paper is to represent a technique of fault detection for the control surface as a base research of the fault tolerant control system for safety improvement of UAV. The real-time system identification based on the recursive Fourier Transform was implemented for the fault detection of the control surface and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than normal condition.

  • PDF

Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV) (무인비행기 (UAV) 영상을 이용한 농작물 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.91-97
    • /
    • 2015
  • The Unmanned Aerial Vehicles (UAVs) have several advantages over conventional RS techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude i.e. 80~400 m, they can obtain good quality images even in cloudy weather. Therefore, they are ideal for acquiring spatial data in cases of small agricultural field with mixed crop, abundant in South Korea. This paper discuss the use of low cost UAV based remote sensing for classifying crops. The study area, Gochang is produced by several crops such as red pepper, radish, Chinese cabbage, rubus coreanus, welsh onion, bean in South Korea. This study acquired images using fixed wing UAV on September 23, 2014. An object-based technique is used for classification of crops. The results showed that scale 250, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5 were the optimum parameter values in image segmentation. As a result, the kappa coefficient was 0.82 and the overall accuracy of classification was 85.0 %. The result of the present study validate our attempts for crop classification using high resolution UAV image as well as established the possibility of using such remote sensing techniques widely to resolve the difficulty of remote sensing data acquisition in agricultural sector.

Development of Digital Stereo Camera System for Hazard Investigation (재난피해조사를 위한 영상촬영시스템 개발)

  • Kim, Gi-Hong;Lee, Suk-Kun;Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.75-83
    • /
    • 2006
  • Satellite imagery is generally used for investigating the damage from natural disaster for wide area and remotely piloted vehicle or aerial photos are used for the local damage. But for more detailed information such as damages of public facilities, these methods are inadequate and so in this case field surveying has been carried out. We tried to estimate the damage of public facilities faster and more accurately using photogrammetric method. We developed a digital stereo camera system by fixing two digital cameras on a frame, and with this system the photos of actually damaged areas were collected. The damages were estimated from these stereo photos. Then the estimated data was compared with field surveying data in order to verify our system.

  • PDF

[Retracted]Design and Implementation of Optimized Profile through analysis of Navigation Data Analysis of Unmanned Aerial Vehicle ([논문철회]무인비행기의 항행 데이터 분석을 통한 최적화된 프로파일 설계 및 구현)

  • Lee, Won Jin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.237-246
    • /
    • 2022
  • Among the technologies of the 4th industrial revolution, drones that have grown rapidly and are being used in various industries can be operated by the pilot directly or can be operated automatically through programming. In order to be controlled by a pilot or to operate automatically, it is essential to predict and analyze the optimal path for the drone to move without obstacles. In this paper, after securing and analyzing the pilot training dataset through the unmanned aerial vehicle piloting training platform designed through prior research, the profile of the dataset that should be preceded to search and derive the optimal route of the unmanned aerial vehicle was designed. The drone pilot training data includes the speed, movement distance, and angle of the drone, and the data set is visualized to unify the properties showing the same pattern into one and preprocess the properties showing the outliers. It is expected that the proposed big data-based profile can be used to predict and analyze the optimal movement path of an unmanned aerial vehicle.