• Title/Summary/Keyword: 무인항공시스템

Search Result 450, Processing Time 0.031 seconds

Development of Autonomous Behavior Software based on BDI Architecture for UAV Autonomous Mission (무인기 자율임무를 위한 BDI 아키텍처 기반 자율행동 소프트웨어 개발)

  • Yang, Seung-Gu;Uhm, Taewon;Kim, Gyeong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.312-318
    • /
    • 2022
  • Currently, the Republic of Korea is facing the problem of a decrease in military service resources due to the demographic cliff, and is pursuing military restructuring and changes in the military force structure in order to respond to this. In this situation, the Army is pushing forward the deployment of a drone-bot combat system that will lead the future battlefield. The battlefield of the future will be changed into an integrated battlefield concept that combines command and control, surveillance and reconnaissance, and precision strike. According to these changes, unmanned combat system, including dronebots, will be widely applied to combat situations that are high risk and difficult for humans to perform in actual combat. In this paper, as one of the countermeasures to these changes, autonomous behavior software with a BDI architecture-based decision-making system was developed. The autonomous behavior software applied a framework structure to improve applicability to multiple models. Its function was verified in a PC-based environment by assuming that the target UAV is a battalion-level surveillance and reconnaissance UAV.

A Realization of Applicable GPS/INS Fault Detection Algorithm for UAV using Low Grade Processor (저급 프로세서에 적용 가능한 무인기용 GPS/INS 고장검출 알고리즘 구현)

  • Yoo, Jang-Sik;Ahn, Jong-Sun;Sung, Sang-Kyung;Lee, Young-Jae;Chun, Se-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.781-789
    • /
    • 2010
  • In the GPS/INS integrated system fault detection, algorithm based on a chi-square distribution is commonly used. In this paper, it has been proposed simplified GPS/INS fault detection algorithm that is combined conventional RAIM (Receiver Autonomous Integrity Monitor) and algorithm based on chi-square distribution for UAV using row-grade processor. It use a fault model to verify the proposed algorithm and produced the result.

A Study on Safety Management Methods for Introduction of the Advanced Aircraft by the Republic of Korea Air Force (한국공군의 첨단 항공기 도입에 따른 안전관리방안 연구)

  • Koo, Bon Ean;Lee, Kang Jun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.36-46
    • /
    • 2021
  • The purpose of this study is to ensure safety by proactively identifying hazards that could be derived from changes in mission form and environment as the advanced aircraft such as F-35A stealth fighter, KC-330 Multi-role transport and tanker, RQ-4B high altitude unmanned reconnaissance aircraft, etc are introduced that the Republic of Korea Air Force(ROKAF) has never been operated so far. To this end, the safety management methods based on proactive and predictive approaches used in advanced countries(US Air Force, UK Royal Air Force, Royal Australian Air Force) operating aircraft types same or similar things being newly powered by the ROKAF were reviewed. In addition, the direction for improvement of the safety management methods operating in the ROKAF and the measures necessary for establishment of the new safety management techniques to be applied were suggested.

Development of Avionics System for the 200 kg-class Tiltrotor UAV (200 kg급 틸트로터 무인기의 항공전자시스템 개발)

  • Chang, Sungho;Cho, Am;Park, Bumjin;Choi, Seongwook
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.65-69
    • /
    • 2013
  • Avionics system designed for the 200 kg-class tiltrotor UAV has been developed. Avionics system for the UAV is the reconstruct system and can be programmed automation controller. This paper focuses on the design aspects of the hardware and presents the ground and flight test results. The hardware aspects of the avionics system include details about the hardware configurations for the interfaces with the Digital Flight Control Computer, sensors and Line-replaceable unit modifications.

New range measurement method between aircraft and runway (항공기와 활주로 사이의 새로운 거리측정방법)

  • Lee, Hyeon-Cheol
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.115-120
    • /
    • 2009
  • Description in this paper is a system for new range measurement method between an aircraft and runway with circular mark in landing runway. The system includes an altimeter and a camera installed on the aircraft, and a circular mark placed on a landing runway. The camera installed on the aircraft must be oriented toward in front of the aircraft, and configured to detect the shape of the circular mark in image information form and a flight control computer configured to calculate the angle between the aircraft and the ground, the ground range between the aircraft and the circular mark, and the slant range between the aircraft and the circular mark with the altitude information measured by the altimeter. This system configured to control the automatic landing of the aircraft with this information.

  • PDF

A Study on the collision avoidance system between aircraft and drones due to the activation of the drone industry (드론 산업 활성화에 따른 항공기와 드론 간 공중 충돌 회피 시스템에 관한 고찰)

  • Kim, Sa-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.969-974
    • /
    • 2021
  • South Korea is making efforts to select a drone industry, a type of unmanned aerial vehicle, as one of the 7 major industries in the country, to select a drone-specific liberalization zone and to establish and revise a drone-related bill. Through these efforts, drone delivery and drone taxis are expected to be operated in the future. Therefore, a multilateral collision avoidance system with existing aircraft such as drones, fixed-wing and rotary-wing should be established to prepare for possible drone and air-borne collisions.

Design of Variable Data Transfer Rate Asymmetric TDD System Using Turbo Decoder with Double Buffer Controller (이중 버퍼 제어기 구조의 터보 복호기를 사용한 전송률 가변 비대칭 TDD 시스템 설계)

  • Park, Byeung-Kwan;Kim, Mi-Rae;Kim, Hyo-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • This paper proposes a variable data transfer asymmetric TDD(Time Division Duplex) system for small UAV(Unmanned Aerial Vehicle) data link system. In the proposed method, a turbo decoder with a double buffer controller is proposed to apply turbo decoder with long decoding time to asymmetric TDD system. The proposed method achieves variable data transfer rate and maximum data transfer rate. The advantage of the proposed method is demonstrated by its data transfer rate. The measured data transfer rate is more than 1.8 times than that of symmetric TDD system. In addition, PER(Packet Error Rate) performance is the same and data transfer rate is variable.

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

Estimation and Verification of Commercial Stability Augmentation System Logic for Small UAV (소형무인기 상용 안정성 증대 장치 로직 추정과 검증)

  • Ko, Dong-hyeon;Rahimy, Mohamad;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.821-829
    • /
    • 2019
  • Because rotorcraft is unstable, it needs a stability system such as flybar. Recently, sensor technology has been developed, it uses a stability augmentation system to improve stability instead of flybar. To use of these rotorcraft which include stability augmentations system for unmanned system, flight control computer, include stability augmentations system function, must be required. In this paper, a reverse-engineering method of estimating Algorithm of Commercial Stability Augmentation System is proposed, the result is applied in the flight computer to make an unmanned rotorcraft system. Finally using a validated algorithm, it is possible to establish a system of unmanned automatic rotorcraft system.

Integrated System of Multiple Real-Time Mission Software for Small Unmanned Aerial Vehicles (소형 무인 항공기를 위한 다중 실시간 미션 소프트웨어 통합 시스템)

  • Jo, Hyun-Chul;Park, Keunyoung;Jeon, Dongwoon;Jin, Hyun-Wook;Kim, Doo-Hyun
    • Telecommunications review
    • /
    • v.24 no.4
    • /
    • pp.468-480
    • /
    • 2014
  • The current-generation avionics systems are based on a federated architecture, where an electronic device runs a single software module or application that collaborates with other devices through a network. This architecture makes the internal system architecture very complicate, and gives rise to issues of Size, Weight, and Power (SWaP). In this paper, we show that the partitioning defined by ARINC 653 can efficiently deal with the SWaP issues on small unmanned aerial vehicles, where the SWaP issues are extremely severe. We especially install the integrated mission system on real hexacopter and quadcopter and perform successful flight tests. The presented software technology for integrated mission system and software consolidation methodology can provide a valuable reference for other SWaP sensitive real-time systems.