• Title/Summary/Keyword: 무인항공기 결함

Search Result 273, Processing Time 0.022 seconds

A Method of Deriving UAS Flight Recording System Parameters for Aviation Accident and Incident Investigation (항공사고 및 준사고 조사를 위한 UAS 비행 기록 시스템 파라미터 도출 방안)

  • Keon-hee Lee;Joong-yoon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • 'UAS flight recording system' is a system that is mounted on an unmanned aircraft system consisting of various components and records flight-related data. The data recorded by this system should be used for aviation accident and incident investigations to prevent similar accidents. In particular, for the category of UAS with high operating risk, safety devices close to that of manned aircraft are required, and it is urgent to develop flight recording systems reflecting the characteristics of the UAS to secure airworthiness. This paper highlights the need for UAS flight recording systems for aviation accident and incident investigations and seek a method to derive flight recording system parameters for 'Certified Category' with high operational risk. To this end, Inter-City UAM was used as a concrete use case, and the process of approaching system parameters was devised by assuming accident occurrences and hazards from mission profiles and scenarios. As a result of the study, it was confirmed that parameters could be derived through this process.

Multidisciplinary UAV Design Optimization Implementing Multi-Fidelity Analysis Techniques (다정밀도 해석기법을 이용한 무인항공기 다분야통합 최적설계)

  • Lee, Jae-Woo;Choi, Seok-Min;Van, Nguyen Nhu;Kim, Ji-Min;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.695-702
    • /
    • 2012
  • In this study, Multi-fidelity analysis is performed to improve the accuracy of analysis result during conceptual design stage. Multidisciplinary Design Optimization(MDO) method is also considered to satisfy the total system requirements. Low-fidelity analysis codes which are based on empirical equations are developed and validated for analyzing the Unmanned Aerial Vehicle(UAV) which have unconventional configurations. Analysis codes consist of initial sizing, aerodynamics, propulsion, mission, weight, performance, and stability modules. Design synthesis program which is composed of those modules is developed. To improve the accuracy of the design method for UAV, Vortex Lattice Method is used for the strategy of MFA. Multi-Disciplinary Feasible(MDF) method is used for MDO technique. To demonstrate the validity of presented method, the optimization results of both methods are compared. According to those results, the presented method is demonstrated to be applicable to improve the accuracy of the analyses during conceptual design stage.

Design and Application of the Warfighting Experiment Process Using the Intelligent Maturity Model in Software Intensive Systems (지능형 성숙도 모델을 이용한 소프트웨어 집약 시스템의 전투실험 프로세스 설계 및 적용)

  • Kang, Dong-Su;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.668-673
    • /
    • 2007
  • We propose the design of the warfighting experiment process for software intensive systems using the intelligent maturity model and suggest the application results of the target searching capability in smart UAV. For this, we design the intelligent maturity model to evaluate the intelligent degree of the software intensive systems considering the domain and intelligent level. Then we classify the IS0/1EC-12207 process and CMMI process as LITO domain for designing the warfighting experiment process, map the classifed process to the five factors of the warfighting experiment and derive the process as warfighting experiment element and phase. Based on the derived process, we design the warfighting experiment process using the IDEF0. Finally we apply the proposed process to the target search capability and suggest the results which are required to develop and acquire the smart UAV.

Pine Wilt Disease Detection Based on Deep Learning Using an Unmanned Aerial Vehicle (무인항공기를 이용한 딥러닝 기반의 소나무재선충병 감염목 탐지)

  • Lim, Eon Taek;Do, Myung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.317-325
    • /
    • 2021
  • Pine wilt disease first appeared in Busan in 1998; it is a serious disease that causes enormous damage to pine trees. The Korean government enacted a special law on the control of pine wilt disease in 2005, which controls and prohibits the movement of pine trees in affected areas. However, existing forecasting and control methods have physical and economic challenges in reducing pine wilt disease that occurs simultaneously and radically in mountainous terrain. In this study, the authors present the use of a deep learning object recognition and prediction method based on visual materials using an unmanned aerial vehicle (UAV) to effectively detect trees suspected of being infected with pine wilt disease. In order to observe pine wilt disease, an orthomosaic was produced using image data acquired through aerial shots. As a result, 198 damaged trees were identified, while 84 damaged trees were identified in field surveys that excluded areas with inaccessible steep slopes and cliffs. Analysis using image segmentation (SegNet) and image detection (YOLOv2) obtained a performance value of 0.57 and 0.77, respectively.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

Analysis of Mutual Coupling between Antennas on Small UAV (소형 무인항공기에 이용되는 안테나간의 상호결합 해석)

  • 김현경;김태식;이해창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.407-415
    • /
    • 2002
  • In this paper, mutual coupling effect between antennas mounted on UAV(Unmanned Air Vehicle), operating In different frequency bands, is calculated for supposing efficient arrangement. For the calculation, FDTD method is used, simulation parameters are confined to distance between antennas, height of antennas, types of ground, etc. The simulation data are compared with those of other numerical method to confirm accuracy of the results. It is appeared that the critical factor of mutual coupling is height of an antenna relative to that of the other antenna.

Loads Analysis of Smart UAV Using ARGON (ARGON을 이용한 스마트 무인기 비행하중해석)

  • Shin, Jeong-Woo;Kim, Sung-Chan;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.76-84
    • /
    • 2005
  • For flight loads analysis of Smart UAV, applicable regulations and loads conditions should be prepared in advance, and modeling for aerodynamics, weight, and structure should be performed. Panel method is usually adopted for aircraft loads analysis to obtain aerodynamic loads. In this study, ARGON which is a multidisciplinary fixed wing aircraft design software co-developed by KARI and TsAGI was used for loads analysis. ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis of Smart UAV which is a FAR 23 category airplane was performed with ARGON and the results were presented.

The Study of the Peer-to-Peer Communication System for a UAV Navigational Monitoring Using a HSDPA (HSDPA를 이용한 무인항공기 항법 모니터링용 Peer-to-Peer 통신 시스템 구현 연구)

  • Kim, Ho-Gyun;Song, Jun-Beom;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1025-1033
    • /
    • 2011
  • This paper presents a realization of a peer-to-peer communication system for a UAV navigational monitoring using a commercial HSDPA(High Speed Download Packet Access) mobile communication device. The realized system consists of a communication server, an air data terminal and multiple ground monitoring devices, where the server transfers navigational data from a UAV to multiple monitoring devices in real-time with commercial HSDPA modem. Through ground and flight tests, data were obtained to observe the realized system. Test results show that, depending on communicational environment, about 300msec delay, congestion and packet-loss between air data terminal and ground monitoring devices. Nevertheless, through high-speed long range test on a ground vehicle and altitude test with a UAV flight, the feasibility of a UAV navigational monitoring system was observed.

Comparison of Feature Point Extraction Algorithms Using Unmanned Aerial Vehicle RGB Reference Orthophoto (무인항공기 RGB 기준 정사영상을 이용한 특징점 추출 알고리즘 비교)

  • Lee, Kirim;Seong, Jihoon;Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Lee, Wonhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.263-270
    • /
    • 2024
  • As unmanned aerial vehicles(UAVs) and sensors have been developed in a variety of ways, it has become possible to update information on the ground faster than existing aerial photography or remote sensing. However, acquisition and input of ground control points(GCPs) UAV photogrammetry takes a lot of time, and geometric distortion occurs if measurement and input of GCPs are incorrect. In this study, RGB-based orthophotos were generated to reduce GCPs measurment and input time, and comparison and evaluation were performed by applying feature point algorithms to target orthophotos from various sensors. Four feature point extraction algorithms were applied to the two study sites, and as a result, speeded up robust features(SURF) was the best in terms of the ratio of matching pairs to feature points. When compared overall, the accelerated-KAZE(AKAZE) method extracted the most feature points and matching pairs, and the binary robust invariant scalable keypoints(BRISK) method extracted the fewest feature points and matching pairs. Through these results, it was confirmed that the AKAZE method is superior when performing geometric correction of the objective orthophoto for each sensor.

Applicability of UAV in Urban Thermal Environment Analysis (도시 내 열환경 분석에서 무인항공기의 활용가능성)

  • Kang, Da-In;Moon, Ho-Gyeong;Sung, Sun-Yong;Cha, Jae-Gyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.52-61
    • /
    • 2018
  • Urban heat islands occur due to increases in the extent of artificial surfaces such as concrete, asphalt and high-rise buildings. In this regard, research into the use of satellite thermal infrared images for thermal environment analysis of urban areas is being carried out. However, such analysis of the characteristics of individual land cover with low-resolution satellite images suffers from limitations because land cover patterns in urban areas are complicated. Recently, UAV has been widely used, which can compensate for this limitation as it is able to acquire high-resolution images. In this paper, the accuracy of UAV infrared images is verified and the applicability of UAV in urban thermal environment analysis is examined by comparing the results with land surface temperatures from Landsat 8 thermal images. The results show a high positive correlation of temperature values at 0.95, and no statistically significant difference between the two groups. Comparisons of land surface temperature according to land cover showed that the largest difference observed was $4.63^{\circ}C$ in the Used area, and UAV images with small cell units reflected various surface temperatures. Furthermore, it was possible to analyze the surface temperatures of various green spaces such as wetlands and street tree areas, which can lower surface temperatures in urban areas, with street tree shadows reducing surface temperatures by about $4-6^{\circ}C$. UAV can easily and rapidly measure the surface temperature of urban areas and is able to analyze various types of green spaces. Thus, this is an effective tool for thermal environment analysis in urban areas to aid in the design or management of urban green spaces, as it can allow for land cover and the effects of the various green spaces.