• Title/Summary/Keyword: 무인항공기(드론)

Search Result 94, Processing Time 0.029 seconds

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.

Navigation System Using Drone for Visitors (드론을 활용한 방문객 길 안내 시스템)

  • Seo, Yeji;Jin, Youngseo;Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.109-114
    • /
    • 2017
  • In our modern society, the utilization of the advanced drone which is capable of performing variety of tasks has been gradually increasing. In this paper, we present an application, similar to the prototype "Skycall" that had been introduced in the MIT Senseable City. To assess this concept, we have implemented a prototype of drone-based pedestrian navigation depending on the Android smartphone. Our system is not only able to guide the user in a very complicated place, where buildings are compacted, but also to block unauthorized visitors from accessing the facilities. And we discuss some problems we found and suggest the direction to address them.

Accuracy Analysis of Low-cost UAV Photogrammetry for Corridor Mapping (선형 대상지에 대한 저가의 무인항공기 사진측량 정확도 평가)

  • Oh, Jae Hong;Jang, Yeong Jae;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.565-572
    • /
    • 2018
  • Recently, UAVs (Unmanned Aerial Vehicles) or drones have gained popularity for the engineering surveying and mapping because they enable the rapid data acquisition and processing as well as their operation cost is low. The applicable fields become much wider including the topographic monitoring, agriculture, and forestry. It is reported that the high geospatial accuracy is achievable with the drone photogrammetry for many applications. However most studies reported the best achievable mapping results using well-distributed ground control points though some studies investigated the impact of control points on the accuracy. In this study, we focused on the drone mapping of corridors such as roads and pipelines. The distribution and the number of control points along the corridor were diversified for the accuracy assessment. In addition, the effects of the camera self-calibration and the number of the image strips were also studied. The experimental results showed that the biased distribution of ground control points has more negative impact on the accuracy compared to the density of points. The prior camera calibration was favored than the on-the-fly self-calibration that may produce poor positional accuracy for the case of less or biased control points. In addition, increasing the number of strips along the corridor was not helpful to increase the positional accuracy.

Synchronization Method Design of Redundant Flight Control Computer for UAV (무인기를 위한 이중화 비행제어컴퓨터의 동기화 설계)

  • Lee, Young Seo;Kang, Shin Woo;Lee, Hee Gon;Ahn, Tae-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.273-279
    • /
    • 2021
  • A flight control computer(FLCC) applied to an unmanned aerial vehicle(UAV) is a safety-critical item, and which is designed in a multiple structure to increase the reliability of operation by securing fault tolerance. These FLCC of multiple structure should be designed so that each independent processing/control components can perform the same operation at the same time. And for this reason, a synchronization algorithm for synchronizing the operation between FLCCs should be included in an operational flight program. In this paper, we propose a software design method for synchronization between dual FLCCs applied to UAVs. The proposed synchronization method is designed to synchronize using only the minimum hardware resources to reduce a failure rate. In addition, the proposed synchronization method is designed to minimized synchronization errors due to a timer operation by designing in consideration of operation characteristics of the hardware timer used for the synchronization.

A Study on the Australian Law Regarding RPAS (Remotely Piloted Aircraft System): Need for an International Approach

  • Wheeler, Joseph;Lee, Jae-Woon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.311-336
    • /
    • 2015
  • This article surveys the current international law with respect to RPAS from both the public air law and private air law perspectives. It then reviews current and proposed Australian domestic RPAS regulation while emphasizing the peculiar risks in operation of RPAS; and how they affect concepts of liability, safety and privacy. While RPAS operations still constitute only a small portion of total operations within commercial aviation, international pilotless flight for commercial air transport remains a future reality. As the industry is developing so quickly the earlier the pursuit of the right policy solutions begins, the better the law will be able to cope with the technological realities when the inevitable risks manifest in accidents. The paper acknowledges that a domestic or regional approach to RPAS, typified by the legislative success of the Australian experience, is and continues to be the principal measure to deal with RPAS issues globally. Furthermore, safety remains the foremost factor in present and revised Australian RPAS regulation. This has an analogue to the international situation. Creating safety-related rules is imperative and must precede the creation or adoption of liability rules because the former mitigates the risk of accidents which trigger the application of the latter. The flipside of a lack of binding airworthiness standards for RPAS operators is potentially a strong argument that the liability regime (and particularly strict liability of operators) is unfair and unsuited to pilotless flight. The potential solutions the authors raise include the need for revised ICAO guidance and, in particular, SARPs with respect to RPAS air safety, airworthiness, and potentially liability issues for participants/passengers, and those on the ground. Such guidance could then be adapted swiftly for appropriate incorporation into domestic laws bypassing the need for or administrative burden and time it would take to activate the treaty process to deal with an arm of aviation that states know all too well is in need of safety regulation and monitoring.

3-dimensional Modeling and Mining Analysis for Open-pit Limestone Mine Stope Using a Rotary-wing Unmanned Aerial Vehicle (회전익 무인항공기를 이용한 노천석회석광산 채굴장 3차원 모델링 및 채굴량 분석)

  • Kang, Seong-Seung;Lee, Geon-Ju;Noh, Jeongdu;Jang, Hyeongdoo;Kim, Sun-Myung;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.701-714
    • /
    • 2018
  • The purpose of this study is to show the possibility of 3-dimensional modeling of open-pit limestone mine by using a rotary-wing unmanned aerial vehicle, a drone, and to estimate the amount of mining before and after mining of limestone by explosive blasting. Analysis of the image duplication of the mine has shown that it is possible to achieve high image quality. Analysis of each axis error at the shooting position after analyzing the distortions through camera calibration was shown the allowable range. As a result of estimating the amount of mining before and after explosive blasting, it was possible to estimate the amount of mining of a wide range quickly and accurately in a relatively short time. In conclusion, it is considered that the drone of a rotary-wing unmanned aerial vehicle can be usefully used for the monitoring of open-pit limestone mines and the estimation of the amount of mining. Furthermore, it is expected that this method will be utilized for periodic monitoring of construction sites and road slopes as well as open-pit mines in the future.

Hovering System for Autonomous Flight of Multi-copter (멀티콥터의 자율비행을 위한 호버링 시스템)

  • Kim, Hyung-Su;Park, Byeong-Ho;Han, Young-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.49-56
    • /
    • 2018
  • As the era of the 4th industrial revolution comes, there is a growing interest in the use of UAVs. While various technologies are being developed using drones, controlling flight of drones is the most basic. Hovering control is essential in order to enable autonomous flight, especially during flight control of drones. In this paper, we design drones based on ATmega2560, Sonar, Optical Flow, and acceleration / gyro 6 axis sensor for drones hovering control, and developed horizontal control, altitude control, position tracking and fixed algorithm based on PID control. In this research, in order to measure the objective result of the drone, keeping the altitude immediately after the drone takes off according to the time, measure the movement value until the position is fixed and stable hovering is maintained and compared analyzed. Experimental results show that the drones can stably hover within 4cm horizontal and 2cm vertical from 50cm above the reference coordinates.

Accuracy Analysis According to the Number of GCP Matching (지상기준점 정합수에 따른 정확도 분석)

  • LEE, Seung-Ung;MUN, Du-Yeoul;SEONG, Woo-Kyung;KIM, Jae-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.127-137
    • /
    • 2018
  • Recently, UAVs and Drones have been used for various applications. In particular, in the field of surveying, there are studies on the technology for monitoring the terrain based on the high resolution image data obtained by using the UAV-equipped digital camera or various sensors, or for generating high resolution orthoimage, DSM, and DEM. In this study, we analyzed the accuracy of GCP(Ground control point) matching using UAV and VRS-GPS. First, we used VRS-GPS to pre-empt the ground reference point, and then imaged at a base altitude of 150m using UAV. To obtain DSM and orthographic images of 646 images, RMSE was analyzed using pix4d mapper version As a result, even if the number of GCP matches is more than five, the error range of the national basic map(scale : 1/5,000) production work regulations is observed, and it is judged that the digital map revision and gauging work can be utilized sufficiently.

Measurement of Construction Material Quantity through Analyzing Images Acquired by Drone And Data Augmentation (드론 영상 분석과 자료 증가 방법을 통한 건설 자재 수량 측정)

  • Moon, Ji-Hwan;Song, Nu-Lee;Choi, Jae-Gab;Park, Jin-Ho;Kim, Gye-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • This paper proposes a technique for counting construction materials by analyzing an image acquired by a Drone. The proposed technique use drone log which includes drone and camera information, RCNN for predicting construction material type, dummy area and Photogrammetry for counting the number of construction material. The existing research has large error ranges for predicting construction material detection and material dummy area, because of a lack of training data. To reduce the error ranges and improve prediction stability, this paper increases the training data with a method of data augmentation, but only uses rotated training data for data augmentation to prevent overfitting of the training model. For the quantity calculation, we use a drone log containing drones and camera information such as Yaw and FOV, RCNN model to find the pile of building materials in the image and to predict the type. And we synthesize all the information and apply it to the formula suggested in the paper to calculate the actual quantity of material pile. The superiority of the proposed method is demonstrated through experiments.

Research on the Meteorological Technology Development using Drones in the Fourth Industrial Revolution (4차산업혁명에서 드론을 활용한 기상기술 개발 연구)

  • Chong, Jihyo;Lee, Seungho;Shin, Seungsook;Hwang, Sung Eun;Lee, Young-tae;Kim, Jeoungyun;Kim, Seungbum
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.12-21
    • /
    • 2019
  • In the era of the Fourth Industrial Revolution, drones have become a flexible device that can be integrated with new technologies. The drones were originally developed as military unmanned aircraft and are now being used in various fields. In the environment and weather observation area, the atmospheric boundary layer is near the surface where the atmosphere is the most active in the meteorological phenomenon and has a close influence on human activities. In order to carry out the study of these atmospheric boundary layers, it is necessary to observe precisely the lower atmosphere and secure the observation technology. The drones in the meteorological field can be used for meteorological observations at a relatively low maintenance cost compared to existing equipment. When used in conjunction with various sensors, the drones can be widely used in atmospheric boundary layer and local meteorological studies. In this study, the possibility of meteorological observations using drones was confirmed by conducting vertical meteorological (temperature and humidity) observation experiments equipped with a combined meteorological sensor and a radio sonde on drones owned by NIMS.