• Title/Summary/Keyword: 무인자율항법

Search Result 57, Processing Time 0.024 seconds

Magnetic Markers-based Autonomous Navigation System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량을 위한 자기표지 기반 무인 자율주행 시스템)

  • Byun, Yeun-Sub;Um, Ju-Hwan;Jeong, Rag-Gyo;Kim, Baek-Hyun;Kang, Seok-Won
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.297-304
    • /
    • 2015
  • Recently, the demand for a PRT(Personal Rapid Transit) system based on autonomous navigation is increasing. Accordingly, the applicability investigations of the PRT system on rail tracks or roadways have been widely studied. In the case of unmanned vehicle operations without physical guideways on roadways, to monitor the position of the vehicle in real time is very important for stable, robust and reliable guidance of an autonomous vehicle. The Global Positioning System (GPS) has been commercially used for vehicle positioning. However, it cannot be applied in environments as tunnels or interiors of buildings. The PRT navigation system based on magnetic markers reference sensing that can overcome these environmental restrictions and the vehicle dynamics model for its H/W configuration are presented in this study. In addition, the design of a control S/W dedicated for unmanned operation of a PRT vehicle and its prototype implementation for experimental validation on a pilot network were successfully achieved.

Navigation of Unmanned Vehicle Using Relative Localization and Magnetic Guidance (상대위치인식과 자계안내를 이용한 무인주행차량의 주행기법)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.430-435
    • /
    • 2011
  • In this paper, a navigation technology of an unmanned vehicle using relative localization and magnetic guidance is proposed. Magnetic guidance system had been developed as a robust autonomous driving technology as long as magnetic fields on the path are detected. Otherwise, if magnetic fields were not detected due to some reasons, the vehicle could not drive. Therefore, in order to overcome the drawback, we propose that relative localization would be combined to magnetic guidance system. To validate the usefulness of the proposed method, a robotic vehicle was set up with the magnetic guidance system and the relative localization. In addition, the unmanned driving test was realized on the road without the magnetic fields so that the proposed method is verified by the experiment.

A study on improving LSAST ambiguity resolution for CDGPS (CDGPS를 위한 LSAST 미지정수 추정기법 개선에 관한 연구)

  • Lee, Gi-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.74-80
    • /
    • 2006
  • GPS, which has been opened to the public since the 1980's, uses the C/A code time of arrival to estimate the position, and measures the carrier doppler frequency to estimate the velocity. In development from the 1990's, DGPS has improved position accuracy by eliminating common errors and CDGPS has achieved cm-level position accuracy using carrier phase. In this paper, a modified LSAST ambiguity resolution method for CDGPS is proposed to improve reliability and computational efficiency. Also the test results of cm level relative positioning of a moving vehicle using single frequency GPS receivers are compared to INS position. This research result can be widely used for the development of high precision INS, unmanned autonomous driving, survey and mapping, etc.

Steering Performance Test of Autonomous Guided Vehicle(AGV) Based on Global Navigation Satellite System(GNSS) (위성항법 기반 AGV(Autonomous Guided Vehicle)의 조향 성능 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Kim, Jeong-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a GNSS-based AGV system was designed, and steering tested on a golf cart using electric wires in order to confirm the control efficiency of the low speed vehicle which used only position information of GNSS. After analyzed the existing AGVs system, we developed controller and steering algorithm using GNSS based position information. To analyze the performance of the developed controller and steering algorithm, straight-type and circle-type trajectory test are executed. The results show that steering performance of GNSS-based AGV system is ${\pm}\;0.2m$ for a reference trajectory.

Failure Detection of Multi-Sensor Navigation System (다중 센서 항법 시스템에서의 센서 측정 실패 감지 시스템에 관한 연구)

  • 오재석;이판묵;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.51-55
    • /
    • 1997
  • This study is devote to developing navigation filter for detecting sensor failure in multi-sensor navigation system. In multi-sensor navigation system, Kalman filter is generally used to fuse data of each sensors. Sensor failure is fatal in case that the sensor is used as external measurement of Kalman filter therefore detection and recovery of sensor failure is one the important feature of navigation filter. Generally each sensors have its specific feature in measuring navigational information. Fuzzy theory is proposed to detect external sensor failure and provide valid external measurement to Kalman filter avoiding filter divergence and instability. This idea is applied to Autonomous Underwater Vehicle(AUV) which has two navigation sensor i. e self contained inertial sensor and acoustic external sensor. 2 dimensional simulation result shows acceptable failure detection and recovery

  • PDF

Development of AUV's Waypoint Guidance Law and Verification by HILS (무인잠수정의 경로점 유도 법칙 설계 및 HILS 검증)

  • Hwang, Jong-Hyon;Yoo, Tae-Suk;Han, Yongsu;Kim, Hyun Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1417-1423
    • /
    • 2020
  • This paper proposes a waypoint guidance algorithm for the Autonomous Underwater Vehicle(AUV). The proposed simplified guidance algorithm is presented, which is combined LOS guidance and cross-track guidance for path following. Cross-track error is calculated using the position of the AUV and reference path. LOS guidance and cross-track guidance are appropriately changed according to cross-track error. And the stability of the system has been improved using variable cross-track control gain by cross-track error. Also, in this paper, navigation hardware in-the loop simulation(HILS) is implemented to verify navigation algorithm of AUV that performs combined navigation using inertial navigation device and doppler velocity log(DVL). Finally, we design integrated system HILS (including navigation HILS) for performance verification of guidance algorithm of the autonomous underwater vehicle. By comparing the sea test result with HILS result, the proposed guidance algorithm and HILS configuration were confirmed be correct.

A Study about Attitude Control of Unmanned Aerial Vehicle(UAV) Using the Inertial Sensor (관성센서를 이용한 무인 항공체의 자세 제어에 관한 연구)

  • Oh, Sung-Ham;Yun, Dong-Woo;Lee, Gum-Soo;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.244-245
    • /
    • 2008
  • 본 논문은 관성센서를 이용한 무인 항공체의 자세 제어에 관한 연구를 다루었다. 항공계의 종류는 크게 고정익기와 회선익기로 나뉘는데 본 연구에서는 회전익기의 형태를 가진 Quarter Vehicle을 사통하였다. Quarter Vehicle은 4개의 프로펠러에 의한 양력과 회전 반발력으로 비행을 한다. 이때의 양력은 수평면에 대해 수직으로 추력을 발생시키므로 다른 비행체보다 불안정하며 이를 안정하게 제어하기 위해 관성 센서를 적용하여 균형을 유지한다. 본 연구에서는 관성센서를 이용하여 UAV의 자세와 균형을 안정적으로 유지하여 안정적인 비행이 가능하도록 하였다. 또한 상호 의존적인 항법 시스템으로 환경변화에 영향을 받지 않으며, 정확한 위치정보를 제공하는 GPS를 사용하여 3개 이상의 위성으로부터 정보를 받아 좌표를 계산하고 위치, 속도 및 방향을 결정하여 자율 비행이 가능하도록 설계하였다. 본 논문에서는 Quarter Vehicle의 구조와 이론적 배경을 통한 설계, 그리고 관성센서와 GPS의 적용을 위한 방법을 제시 한다.

  • PDF

A Study on the Research Trends in Unmanned Surface Vehicle using Topic Modeling (토픽모델링을 이용한 무인수상정 기술 동향 분석)

  • Kim, Kwimi;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.597-606
    • /
    • 2020
  • Because the USV(Unmanned Surface Vehicle) is capable of remote control or autonomous navigation at sea, it can secure the superiority of combat power while minimizing human losses in a future combat environment. To plan the technology for the development of USV, the trend analysis of related technology and the selection of promising technology should be preceded, but there has been little research in this area. The purpose of this paper was to measure and evaluate the technology trends quantitatively. For this purpose, this study analyzed the technology trends and selected promising/declining technologies using topic modeling of papers and patent data. As a result of topic modeling, promising technologies include control and navigation, verification/validation, autonomous level, mission module, and application technology, and declining technologies include underwater communication and image processing technology. This study also identified new technology areas that were not included in the existing technology classification, e.g., technology related to research and development of USV, artificial intelligence, launch/recovery, and operation, such as cooperation with manned and unmanned systems. The technology trends and new technology areas identified through this study may be used to derive key technologies related to the development of the USV and establish appropriate R&D policies.

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a system for monitoring air pollutants such as fine dust using an unmanned aerial vehicle capable of autonomous navigation. The existing air quality management system used a method of collecting information through a fixed sensor box or through a measurement sensor of a drone using a control device. This has disadvantages in that additional procedures for data collection and transmission must be performed in a limited space and for monitoring. In this paper, to overcome this problem, a GPS module for location information and a PMS7003 module for fine dust measurement are embedded in an unmanned aerial vehicle capable of autonomous navigation through flight information designation, and the collected information is stored in the SD module, and after the flight is completed, press the transmit button. It configures a system of one-stop structure that is stored in a remote database through a smartphone app connected via Bluetooth. In addition, an HTML5-based web monitoring page for real-time monitoring is configured and provided to interested users. The results of this study can be utilized in an environmental monitoring system through an unmanned aerial vehicle, and in the future, various pollutants measuring sensors such as sulfur dioxide and carbon dioxide will be added to develop it into a total environmental control system.

Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers (두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬)

  • LEE PAN-MOOK;JUN BONG-HUAN;HONG SEOK-WON;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.