• Title/Summary/Keyword: 무선 에드혹 네트워크

Search Result 45, Processing Time 0.019 seconds

Designing of Network based Tiny Ubiquitous Networked Systems (네트워크 기반의 소형 유비쿼터스 시스템의 개발)

  • Hwang, Kwang-Il;Eom, Doo-Seop
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.3
    • /
    • pp.141-152
    • /
    • 2007
  • In this paper, we present a network-oriented lightweight real-time system, which is composed of an event-driven operating system called the Embedded Lightweight Operating System (ELOS) and a generic multi hop ad hoc routing protocol suite. In the ELOS, a conditional preemptive FCFS scheduling method with a guaranteed time slot is designed for efficient real-time processing. For more elaborate configurations, we reinforce fault tolerance by supplementing semi-auto configuration using wireless agent nodes. The developed hardware platform is also introduced, which is a scalable prototype constructed using off-the-shelf components. In addition, in order to evaluate the performance of the proposed system, we developed a ubiquitous network test-bed on which several experiments with respect to various environments are conducted. The results show that the ELOS is considerably favorable for tiny ubiquitous networked systems with real-time constraints.

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks (ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.

An Efficient Node Life-Time Management of Adaptive Time Interval Clustering Control in Ad-hoc Networks (애드혹 네트워크에서 적응적 시간관리 기법을 이용한 클러스터링 노드 에너지 수명의 효율적인 관리 방법)

  • Oh, Young-Jun;Lee, Knag-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.495-502
    • /
    • 2013
  • In the mobile Ad hoc Network(MANET), improving technique for management and control of topology is recognized as an important part of the next generation network. In this paper, we proposed an efficient node life time management of ATICC(Adaptive Time Interval Clustering Control) in Ad-hoc Networks. Ad-hoc Network is a self-configuration network or wireless multi-hop network based on inference topology. This is a method of path routing management node for increasing the network life time through the periodical route alternation. The proposed ATICC algorithm is time interval control technique depended on the use of the battery energy while node management considering the attribute of node and network routing. This can reduce the network traffic of nodes consume energy cost effectively. As a result, it could be improving the network life time by using timing control method in ad-hoc networks.

A Packet Distribution Routing for Balancing Energy-Consumption in MANET (MANET의 에너지 분산 소모를 위한 패킷 분산 라우팅)

  • Jin, Dong-Xue;Choi, Yong-Jun;Park, Hee-Joo;Kim, Chong-Gun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.2
    • /
    • pp.79-86
    • /
    • 2008
  • MANET(Mobile Ad hoc Network) is a collection of two or more nodes equipped with wireless communications and constrained by the factor of energy limitation. The running out of energy on some nodes may bring down the performance of network seriously. For solving the problems above, this paper uses completely separated Node-Disjoint multipaths from a source to a destination as many as possible. And, based on average, minimum or variance of energy values on the each multipath, the packets are distributed on paths. Generally, collecting methods for energy information can be classified into two main categories, Static and Dynamic. As the different energy values collected, the packet distribution methods are classified into six criteria, Static-Average, Static-Minimum, Static-Variance, Dynamic-Average, Dynamic-Minimum and Dynamic-Variance respectively. The performance of the packet distribution methods and that of AODV are compared by NS2 simulation.

Cross-Layer Protocol Design for Effective Video Transmission in Wireless Ad hoc Networks (무선 에드 혹 네트워크에서 비디오 전송에 효율적인 Cross-Layer 프로토콜 설계)

  • Seo Jee-Young;Cho Eun-Hee;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.144-153
    • /
    • 2006
  • In this paper, we propose an efficient video data transmission protocol using the cross-layer approach in ad hoc networks. Due to node movement, the MANET is frequently changing path and each path has different transmission rate so that it has low performance when transmitters select a constant transmission late at the encoding time. Because MANET is running limited energy, efficient energy management is important because it increases network life time and network throughput. Therefore we need an effective video transmission method that considers physical layer channelstatistics, node's energy status, and network topology changes at the same time unlike the OSI recommendation protocol in that each layer isindependent and hard to transmit adaptively video data according to the network conditions. Therefore, in this paper we propose a cross-layer effective video transmission protocol and mechanism that can select an optimal path using multilayer information such as node's residual energy, channel condition and hop counts and can determine the adequate coding rate adaptively.