• Title/Summary/Keyword: 무선 센서 시스템

Search Result 1,462, Processing Time 0.028 seconds

Wireless LAN-based Vehicle Location Estimation in GPS Shading Environment (GPS 음영 환경에서 무선랜 기반 차량 위치 추정 연구)

  • Lee, Donghun;Min, Kyungin;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.94-106
    • /
    • 2020
  • Recently, the radio navigation method utilizing the GPS(Global Positioning System) satellite information is widely used as the method to measure the position of objects. As GPS applications become wider and fields based on various positioning information emerge, new methods for achieving higher accuracy are required. In the case of autonomous vehicles, the INS(Inertial Navigation System) using the IMU(Inertial Measurement Unit), and the DR(Dead Reckoning) algorithm using the in-vehicle sensor, are used for the purpose of preventing degradation of accuracy of the GPS and to measure the position in the shadow area. However, these positioning methods have many elements of problems due not only to the existence of various shaded areas such as building areas that are continually enlarged, tunnels, underground parking lots and but also to the limitations of accumulation-based location estimation methods that increase in error over time. In this paper, an efficient positioning method in a large underground parking space using Fingerprint method is proposed by placing the AP(Access Points) and directional antennas in the form of four anchors using WLAN, a popular means of wireless communication, for positioning the vehicle in the GPS shadow area. The proposed method is proved to be able to produce unchanged positioning results even in an environment where parked vehicles are moved as time passes.

Development of Gait Analysis Algorithm for Hemiplegic Patients based on Accelerometry (가속도계를 이용한 편마비 환자의 보행 분석 알고리즘 개발)

  • 이재영;이경중;김영호;이성호;박시운
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.55-62
    • /
    • 2004
  • In this paper, we have developed a portable acceleration measurement system to measure acceleration signals during walking and a gait analysis algorithm which can evaluate gait regularity and symmetry and estimate gait parameters automatically. Portable acceleration measurement system consists of a biaxial accelerometer, amplifiers, lowpass filter with cut-off frequency of 16Hz, one-chip microcontroller, EEPROM and RF(TX/RX) module. The algerian includes FFT analysis, filter processing and detection of main peaks. In order to develop the algorithm, eight hemiplegic patients for training set and the other eight hemiplegic patients for test set are participated in the experiment. Acceleration signals during 10m walking were measured at 60 samples/sec from a biaxial accelerometer mounted between L3 and L4 intervertebral area. The algorithm, detected foot contacts and classified right/left steps, and then calculated gait parameters based on these informations. Compared with video data and analysis by manual, algorithm showed good performance in detection of foot contacts and classification of right/left steps in test set perfectly. In the future, with improving the reliability and ability of the algerian so that calculate more gait Parameters accurately, this system and algerian could be used to evaluate improvement of walking ability in hemiplegic patients in clinical practice.

Implementation of a Remote Patient Monitoring System using Mobile Phones (모바일 폰을 이용한 원격 환자 관리 시스템의 구현)

  • Park, Hung-Bog;Seo, Jung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1167-1174
    • /
    • 2009
  • In the monitoring of a patient in a sickroom, not only the physiologic and environmental data of the patient, which is automatically measured, but also the clinical data(clinical chart)of the patient, which is drew up by a doctor or nurse, are recognized as important data. However, since in the current environment of a sickroom, clinical data is collected being divided from the data that is automatically measured, the two data are used without an effective integration. This is because the integration of the two data is difficult due to their different collection times, which leads the reconstruction of clinical data to be remarkably uncertain. In order to solve these problems, a method to synchronize the continuous environmental data of a sickroom and clinical data is appearing as an important measure. In addition, the increase of use of small machines and the development of solutions based on wireless communications provide a communication platform to the developers of health care. Thus, this paper realizes a remote system for taking care of patients based on a web that uses mobile phones. That is, clinical data made by a nurse or doctor and the environmental data of a sick room comes to be collected by a collection module through a wireless sensor network. An observer can see clinical data and the environmental data of a sickroom through his/her mobile phone, integrating and storing his/her data into the database. Families of a patient can see clinical data made by hospital and the environment of the sick room of the patent through their computers or mobile phones outside the hospital. Through the system,hospital can provide better medical services to patients and their families.

An Enhanced DESYNC Scheme for Simple TDMA Systems in Single-Hop Wireless Ad-Hoc Networks (단일홉 무선 애드혹 네트워크에서 단순 TDMA 시스템을 위한 DESYNC 알고리즘 개선 방안)

  • Hyun, Sanghyun;Lee, Jeyul;Yang, Dongmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.293-300
    • /
    • 2014
  • TDMA(Time Division Multiple Access) is a channel access scheme for shared medium networks. The shared frequency is divided into multiple time slots, some of which are assigned to a user for communication. Techniques for TDMA can be categorized into two classes: synchronous and asynchronous. Synchronization is not suitable for small scale networks because it is complicated and requires additional equipments. In contrast, in DESYNC, a biologically-inspired algorithm, the synchronization can be easily achieved without a global clock or other infrastructure overhead. However, DESYNC spends a great deal of time to complete synchronization and does not guarantee the maximum time to synch completion. In this paper, we propose a lightweight synchronization scheme, C-DESYNC, which counts the number of participating nodes with GP (Global Packet) signal including the information about the starting time of a period. The proposed algorithm is mush simpler than the existing synchronization TDMA techniques in terms of cost-effective method and guarantees the maximum time to synch completion. Our simulation results show that C-DESYNC guarantees the completion of the synchronization process within only 3 periods regardless of the number of nodes.

Real-Time Construction Resource Monitoring using RFID/USN Inter-working System (RFID/USN 연동 시스템을 활용한 건설자원 실시간 모니터링 시스템)

  • Ryu, Jeoung-Pil;Kim, Hyoung-Kwan;Kim, Chang-Yoon;Kim, Chang-Wan;Han, Seung-Heon;Kim, Moon-Kyum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.90-94
    • /
    • 2007
  • Location tracking automation of resources in construction industry is one of the most important procedures to improve construction project performance and reduce the period of construction. Recently, location tracking technologies have proven to be effective in tracking construction materials and equipment in real time through the instrumentality of RFID (Radio Frequency Identification). By using wireless communication and inter-working system between RFID and USN, it is possible that construction engineers receive the location information of construction resources without additional efforts that move the RFID reader to read tags periodically. In the inter-working system, RFID reader delivers the acquired materials information to sensor node which is connected by serial interface. Then sensor node transmits the received data to the data aggregation terminal that is a sink node. The data aggregation terminal can transmit collected data to construction manager who is out of construction site using infrastructure such as CDMA(Code Division Multiple Access) network. The combination model of the two system and field test scenarios are presented in this paper.

  • PDF

Performance verification methods of an inertial measurement unit in flight environment using the real time dual-navigation (실시간 다중항법을 이용한 관성측정기의 비행환경 성능 검증 기법)

  • Park, ByungSu;Lee, SangWoo;Jeong, Sang Mun;Han, KyungJun;Yu, Myeong-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.36-45
    • /
    • 2017
  • Abstract It is necessary to verify the properties of an inertial measurement unit in the flight environment before applying to military applications. In this paper, we presented a new approach to verify an inertial measurement unit(IMU) in regard to the performance and the robustness in flight environments for the high-dynamics vehicle systems. We proposed two methods for verification of an IMU. We confirmed normal operation of an IMU and properties in flight environment by using direct comparison method. And we proposed real time multi-navigation system to complement the first method. The proposed method made it possible to compare navigation result at the same time. Therefore, it is easy to analyze the performance of an inertial navigation system and robustness during the vehicle flight. To verify the proposed method, we carried out a flight test as well as an experimental test of flight vibration on the ground. As a result of the experiment, we confirmed flight environment properties of an IMU. Therefore, we shows that the proposed method can serve the reliability improvement of IMU.

A Design of Ultra-low Noise LDO Regulator for Low Voltage MEMS Microphones (저전압 MEMS 마이크로폰용 초저잡음 LDO 레귤레이터 설계)

  • Moon, Jong-il;Nam, Chul;Yoo, Sang-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.630-633
    • /
    • 2021
  • Microphones can convert received voice signals to electric signals. They have been widely used in various industries such as radios, smart devices and vehicles. Recently, the demands for small size and high sensitive microphones are increased according to the minimization of wireless earphone with the development of smart phone. A MEMS system is a good candidate for an ultra-small size microphone of a next generation and a read out IC for high sensitive MEMS sensor is researched from many industries and academies. Since the microphone system has a high sensitivity from environment noise and electric system noise, the system requires a low noise power supply and some low noise design techniques. In this paper, a low noise LDO is presented for small size MEMS microphone systems. The input supply voltage of the LDO is 1.5-3.6V, and the output voltage is 1.3V. Then, it can support to 5mA in the light load condition. The integrated output noise of proposed LDO form 20Hz to 20kHz is about 1.9uV. These post layout simulation results are performed with TSMC 0.18um CMOS technology and the size of layout is 325㎛ × 165㎛.

  • PDF

Improvement Plan of NFRDI Serial Oceanographic Observation (NSO) System for Operational Oceanographic System (운용해양시스템을 위한 한국정선해양관측시스템 발전방향)

  • Lee, Joon-Soo;Suh, Young-Sang;Go, Woo-Jin;Hwang, Jae-Dong;Youn, Seok-Hyun;Han, In-Seong;Yang, Joon-Yong;Song, Ji-Young;Park, Myung-Hee;Lee, Keun-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • This study seeks to improve NFRDI Serial Oceanographic observation (NSO) system which has been operated at current observation stations in the Korean Seas since 1961 and suggests the direction of NSO for practical use of Korean operational oceanographic system. For improvement, data handling by human after CTD (Conductivity-Temperature-Depth) observation on the deck, data transmission, data reception in the land station, and file storage into database need to be automated. Software development to execute QA/QC (Quality Assurance/Quality Control) of real-time oceanographic observation data and to transmit the data with conversion to appropriate format automatically will help to accomplish the automation. Inmarsat satellite telecommunication systems with which have already been equipped on board the current observation vessels can realize the real-time transmission of the data. For the near real-time data transmission, CDMA (Code Division Multiple Access) wireless telecommunication can provide efficient transmission in coastal area. Real-time QA/QC procedure after CTD observation will help to prevent errors which can be derived from various causes.

Design and Implementation of Response type of Flickering Green Signal System using Beacon Message (비콘메세지를 이용한 반응형 녹색점멸 신호시스템 설계 및 구현)

  • An, Hyo-In;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.241-247
    • /
    • 2016
  • As a domestic traffic control signal system, either the system with which a traffic signal turns into green at regular intervals or the system with which an amber or a red signal flickers on local roads without heavy traffic at midnight has been utilized. However, when the former system is used for roads with light traffic at midnight, delays and congestion can be incurred. Besides, in case of the latter signal system, the risk of vehicle crash is high. This study proposes a response type of flickering green signal system that rearranges signal system after analyzing beacon messages including sensor data. The proposed system, on a trunk road or a branch road at midnight, makes the signal keep flickering in green; When a vehicle enters the range of RSE, the transfer coverage, it transmits beacon messages regularly and Agent System analyzes the messages and alters the signal. It is a system by which vehicles move following the altered signal system, which will not only ensure smooth flow but also prevent vehicles from crashing on a road with light traffic. As a result of a simulation, traffic throughput and the average waiting time displayed 10 to 30 percent better improvement than existing signal systems, in terms of performance.

Internet-of-Things Based Approach for Monitoring Pharmaceutical Cold Chain (사물인터넷을 이용한 의약품 콜드체인 관리 시스템)

  • Chandra, Abel Avitesh;Back, Jong Sang;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.828-840
    • /
    • 2014
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT). The IoT enables physical world objects in our surroundings to be connected to the Internet. For this idea to come to life, two architectures are required: the Sensing Entity in the environment which collects data and connects to the cloud and the Cloud Service that hosts the data. In particular, the combination of wireless sensor network for sensing and cloud computing for managing sensor data is becoming a popular intervention for the IoT era. The pharmaceutical cold chain requires controlled environmental conditions for the sensitive products in order for them to maintain their potency and fit for consumption. The monitoring of distribution process is the only assurance that a process has been successfully validated. The distribution process is so critical that anomaly at any point will result in the process being no longer valid. Taking the cold chain monitoring to IoT and using its benefits and power will result in better management and product handling in the cold chain. In this paper, Arduino based wireless sensor network for storage and logistics (land and sea) is presented and integrated with Xively cloud service to offer a real-time and innovative solution for pharmaceutical cold chain monitoring.